
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 1

How to Use the IEEEtran LATEX Class
Michael Shell, Member, IEEE

(Invited Paper)

Abstract—This article describes how to use the IEEEtran class
with LATEX to produce high quality typeset papers that are suit-
able for submission to the Institute of Electrical and Electronics
Engineers (IEEE). IEEEtran can produce conference, journal
and technical note (correspondence) papers with a suitable choice
of class options. This document was produced using IEEEtran
in journal mode.

Index Terms—Class, IEEEtran, LATEX, paper, style, template,
typesetting.

I. INTRODUCTION

W ITH a recent IEEEtran class file, a computer running
LATEX, and a basic understanding of the LATEX language,

an author can produce professional quality typeset research
papers very quickly, inexpensively, and with minimal effort.
The purpose of this article is to serve as a user guide of
IEEEtran LATEX class and to document its unique features and
behavior.

This document applies to version 1.8b and later of IEEEtran.
Prior versions do not have all of the features described here.
IEEEtran will display the version number on the user’s console
when a document using it is being compiled. The latest version
of IEEEtran and its support files can be obtained from IEEE’s
web site [1], or CTAN [2]. This latter site may have some
additional material, such as beta test versions and files related
to non-IEEE uses of IEEEtran. See the IEEEtran homepage
[3] for frequently asked questions and recent news about
IEEEtran.

Complimentary to this document are the files1 bare_con

f.tex, bare_jrnl.tex, bare_jrnl_comsoc.tex, bare_
conf_compsoc.tex, bare_jrnl_compsoc.tex and bare_

jrnl_transmag.tex, which are “bare bones” example (tem-
plate) files of a conference, journal, IEEE Communications
Society journal, IEEE Computer Society conference, IEEE
Computer Society journal and IEEE TRANSACTIONS ON
MAGNETICS paper, respectively. Authors can quickly obtain
a functional document by using these files as starters for their
own work. A more advanced example featuring the use of

Manuscript created February 25, 2002; revised August 26, 2015. This work
was supported by the IEEE. This work is distributed under the LATEX Project
Public License (LPPL) (http://www.latex-project.org/) version 1.3. A copy
of the LPPL, version 1.3, is included in the base LATEX documentation of all
distributions of LATEX released 2003/12/01 or later. The opinions expressed
here are entirely that of the author. No warranty is expressed or implied. User
assumes all risk.

See http://www.michaelshell.org/ for current contact information.
1Note that it is the convention of this document not to hyphenate command

or file names and to display them in typewriter font. Within such
constructs, spaces are not implied at a line break and will be explicitly carried
into the beginning of the next line. This behavior is not a feature of IEEEtran,
but is used here to illustrate computer commands verbatim.

optional packages along with more complex usage techniques,
can be found in bare_adv.tex.

It is assumed that the reader has at least a basic working
knowledge of LATEX. Those so lacking are strongly encouraged
to read some of the excellent literature on the subject [4]–[6].
In particular, Tobias Oetiker’s The Not So Short Introduction
to LATEX 2ε [5], which provides a general overview of working
with LATEX, and Stefan M. Moser’s How to Typeset Equations
in LATEX [6], which focuses on the formatting of IEEE-style
equations using IEEEtran’s IEEEeqnarray commands, are both
available for free online.

General support for LATEX related questions can be obtained
in the internet newsgroup comp.text.tex. There is also a
searchable list of frequently asked questions about LATEX [7].

Please note that the appendices sections contain information
on installing the IEEEtran class file as well as tips on how to
avoid commonly made mistakes.

II. CLASS OPTIONS

There are a number of class options that can be used to
control the overall mode and behavior of IEEEtran. These are
specified in the traditional LATEX way. For example,

\documentclass[9pt,technote]{IEEEtran}

is used with correspondence/brief/technote papers. The various
categories of options will now be discussed. For each category,
the default option is shown in bold. The user must specify an
option from each category in which the default is not the one
desired. The various categories are totally orthogonal to each
other—changes in one will not affect the defaults in the others.

A. 9pt, 10pt, 11pt, 12pt

There are four possible values for the normal text size. 10pt
is used by the vast majority of papers. Notable exceptions are
technote papers, which use 9pt text and the initial submissions
to some conferences that use 11pt.

Be aware that IEEE Computer Society publications use
“PostScript” (i.e., “big point”, bp) point sizes (i.e., 72bp =
1in) rather than the traditional typesetters’ point (i.e., 72.27pt
= 1in). Also, “10pt” IEEE Computer Society journal papers
actually use a slightly smaller, 9.5bp, font size (probably to
compensate for the slightly wider nature of the Palatino font).
IEEEtran will automatically tweak the selected font size as
needed depending on the mode.

0000–0000/00$00.00 c© 2015 Michael Shell

http://www.latex-project.org/
http://www.michaelshell.org/

2 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

B. draft, draftcls, draftclsnofoot, final

IEEEtran provides for three draft modes as well as the
normal final mode. The draft modes provide a larger (double)
line spacing to allow for editing comments as well as one
inch margins on all four sides of the paper. The standard draft
option puts every package used in the document into draft
mode. With most graphics packages, this has the effect of
disabling the rendering of figures. If this is not desired, one
can use the draftcls option instead to yield a draft mode that
will be confined within the IEEEtran class so that figures will
be included as normal. draftclsnofoot is like draftcls, but does
not display the word “DRAFT” along with the date at the
foot of each page. Both draft and draftclsnofoot modes imply
draftcls (which is a subset of the other two). When using one
of the draft modes, most users will also want to select the
onecolumn option.

C. conference, journal, technote, peerreview, peerreviewca

IEEEtran offers five major modes to encompass conference,
journal, correspondence (brief/technote) and peer review pa-
pers. Journal and technote modes will produce papers very
similar to those that appear in many IEEE TRANSACTIONS
journals. When using technote, most users should also select
the 9pt option. The peerreview mode is much like the journal
mode, but produces a single-column cover page (with the
title, author names and abstract) to facilitate anonymous peer
review. The title is repeated (without the author names or
abstract) on the first page after the cover page.2 Papers using
the peer review options require an \IEEEpeerreviewmaket

itle command (in addition to and after the traditional \make
title) to be executed at the place the cover page is to end—
usually just after the abstract. This command will be silently
ignored with the non-peerreview modes. See the bare template
files for an example of the placement of this command. The
peerreviewca mode is like peerreview, but allows the author
name information to be entered and formatted as is done
in conference mode (see Section IV-B2 for details) so that
author affiliation and contact information is more visible to
the editors.

1) Conference Mode Details: Conference mode makes a
number of significant changes to the way IEEEtran behaves:

• The margins are increased as the height of the text is
reduced to about 9.25in. In particular, the bottom margin
will become larger than that of the top as the IEEE wants
extra clearance at the bottom. The text height will not be
exactly 9.25in, but will vary slightly with the normal font
size to ensure an integer number of lines in a column.

• Headings and page numbers are not displayed in the
headers or footers. This, coupled with symmetric hori-
zontal margins, means that there will not be a noticeable
difference between the one and two sided options.

• The \author text is placed within a tabular environment
to allow for multicolumn formatting of author names and

2A blank page may be inserted after the cover page when using the twoside
(duplex printing) option so that the beginning of the paper does not appear
on the back side of the cover page.

affiliations. Several commands are enabled to facilitate
this formatting (see Section IV-B2 for details).

• The spacing after the authors’ names is reduced. So is
the spacing around the section names.

• The special paper notice (if used) will appear between the
author names and the title (not after as with journals).

• The figure captions are centered.
• The following commands are intentionally disabled: \t
hanks, \IEEEPARstart, \IEEEbiography, \IEEEb

iographynophoto, \IEEEpubid, \IEEEpubidadjco

l, \IEEEmembership, and \IEEEaftertitletext. If
needed, they can be reenabled by issuing the command:
\IEEEoverridecommandlockouts.

• Various reminder (related to camera ready work) and
warning notices are enabled.

When using conference mode, most users will also want to
equalize the columns on the last page (see Section XIV).

D. comsoc, compsoc, transmag

These mutually exclusive options invoke special modes by
which IEEEtran produces the format of the publications of the
IEEE Communications Society, IEEE Computer Society and
IEEE TRANSACTIONS ON MAGNETICS, respectively. Neither
of these are enabled by default.

1) Comsoc Mode: Comsoc mode only affects the math font
so that it will more closely match the Times Roman main text.
Either Michael Sharpe’s freely available newtxmath package
[8] (version 1.451, July 28, 2015 or later is recommended)
or the commercial MathTime [9] math fonts (as mtpro2.sty,
mt11p.sty or mathtime.sty) are acceptable. Under comsoc
mode, if one of these packages has not been loaded by the
user at the start of the document, IEEEtran will attempt to
enforce their use based on what is available on the system.

The recommended loading procedure and order for newtx-
math is:

\usepackage[T1]{fontenc} % optional
\usepackage{amsmath}
\usepackage[cmintegrals]{newtxmath}
\usepackage{bm} % optional

where the cmintegrals option, which IEEEtran sets as a default
upon loading newtxmath, is needed to obtain the specific style
of integral symbol used by the IEEE Communications Society.
The optional bm package [10] provides for selective bold
math. Be aware that the AMS Math amssymb.sty package [11]
is not needed and should not be loaded as that functionality is
built into and provided by newtxmath as well as MathTime.
Also, do not load the newtxtext.sty package as doing so would
alter the main text font.

a) Comsoc Conference Mode: Comsoc conference pa-
pers are, at present, done the same way as traditional confer-
ence papers (bare_conf.tex) and so no additional example
file is required. Unless specifically instructed otherwise by
the conference that is being submitting to, do not invoke the
comsoc option with conference papers.

2) Compsoc Mode: Notable compsoc mode format features
include:

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 3

• the default text font is changed from Times Roman
to Palatino/Palladio (non-conference compsoc modes
only);

• revised margins;
• Arabic section numbering;
• enabling of the \IEEEcompsocitemizethanks and \I

EEEcompsocthanksitem commands to provide for the
\thanks (first footnote) itemized list used for author
affiliations;

• enabling of the \IEEEtitleabstractindextext com-
mand to provide for single column abstract and index
terms (see Section V);

• various other styling changes (most of which are only
applicable under the non-conference compsoc modes)
such as the use of: a sans serif (Helvetica) font for titles,
headings, etc.; a ruled line above the first footnote area;
left aligned reference labels; etc.

a) Compsoc Conference Mode: IEEEtran follows the
guidelines for IEEE Computer Society conference papers.
Perhaps surprisingly, this format nullifies many of the unique
features of compsoc journals and is not so much different
from traditional conference mode. However, Arabic section
numbering is retained. It should be mentioned that Scott
Pakin’s IEEEconf LATEX class [12] also produces this format.
Be aware that many IEEE Computer Society conferences use
the traditional conference format and compsoc mode should
not be used with them.

3) Transmag Mode: For the transmag mode:

• The text within \author should be entered as the long
form under conference mode;

• enabling of the \IEEEtitleabstractindextext com-
mand to provide for single column abstract and index
terms (see Section V);

• \IEEEauthorrefmark will produce arabic author affil-
iation symbols;

• subsection and subsubsection headings and/or their spac-
ings are slightly different;

• a smaller, bold font than normal is used for the title.

The transmag mode (as well as the standard journal mode)
is also acceptable for submission to IEEE Magnetics Letters.
Authors who wish to have their figures and tables appear at
the end of the paper can use the endfloat.sty [13] package to
achieve this.

E. letterpaper, a4paper, cspaper

IEEEtran fully supports both the US letter (8.5in × 11in)
and A4 (210mm × 297mm) paper sizes. Since the IEEE
primarily uses US letter, authors should usually select the
letterpaper option before submitting their work to the IEEE—
unless told otherwise (typically by conferences held outside
the United States). Changing the paper size in the standard
journal and conference modes will not alter the typesetting of
the document—only the margins will be affected. In particular,
documents using the a4paper option will have reduced side
margins (A4 is narrower than US letter) and a longer bottom
margin (A4 is longer than US letter). For both cases, the top

margins will be the same and the text will be horizontally
centered.

For the compsoc conference and draft modes, it is the
margins that will remain constant, and thus the text area size
will vary, with changes in the paper size.

The cspaper option is the special “trim” paper size (7.875in
× 10.75in) used in the actual publication of IEEE Computer
Society journals. Under compsoc journal mode, this option
does not alter the typesetting of the document. Authors should
invoke this option only if requested to do so by the editors of
the specific journal they are submitting to.

Note that authors should ensure that all post-processing
(PS, PDF, etc.) uses the same paper specification as the .tex
document. Problems here are by far the number one reason
for incorrect margins. See Appendix B for more details.

For the special cspaper size, be aware that although IEEE-
tran will automatically configure the correct paper dimensions
for pdfLATEX’s PDF mode (which it does for all paper sizes),
dvips (the application used for DVI to PS conversion) systems
will not recognize the special “ieeecs” paper unless there is
such an entry in dvips’ config.ps configuration file:
% Special paper size for the IEEE Computer Society J
ournals
@ ieeecs 7.875in 10.75in
@+ ! %%DocumentPaperSizes: ieeecs
@+ %%BeginPaperSize: ieeecs
@+ /setpagedevice where
@+ { pop << /PageSize [567 774] >> setpagedevice }
@+ if
@+ %%EndPaperSize

Most modern PS to PDF conversion software will correctly
handle such custom paper sizes if a different specific paper
size is not explicitly requested for the conversion process.

F. oneside, twoside

These options control whether the layout follows that of
single sided or two sided (duplex) printing. Because the side
margins are normally centered, the main notable difference is
in the format of the running headings.

G. onecolumn, twocolumn
These options allow the user to select between one and

two column text formatting. Since the IEEE always uses two
column text, the onecolumn option is of interest only with
draft papers.

H. romanappendices

IEEEtran defaults to numbering appendices alphabetically
(e.g., A, B, etc.). Invoke this option to get Roman numbering.

I. captionsoff

Invoking this option will inhibit the display of captions
within figures and tables. This is done in a manner that
preserves the operation of \label within \caption. This
option is intended for journals, such as IEEE TRANSACTIONS
ON POWER ELECTRONICS (TPE), that require figures and
tables to placed, captionless, on pages of their own at the

4 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

end of the document. Such figure placement can be achieved
with the help of the endfloat.sty package [13]:

\usepackage[nomarkers]{endfloat}

Note that the TPE has other unusual formatting requirements
that also require the draftclassnofoot and onecolumn options
as well as the insertion of page breaks (\newpage) just prior
to the first section as well as the bibliography. Such commands
can be enabled conditionally via the \ifCLASSOPTIONcapt

ionsoff conditional (Section III-A).

J. nofonttune

IEEEtran normally alters the default interword spacing to
be like that used in IEEE publications. The result is text that
requires less hyphenation and generally looks more pleasant,
especially for two column text. The nofonttune option will
disable the adjustment of these font parameters. This option
should be of interest only to those who are using fonts
specifically designed or modified for use with two column
work.

III. THE CLASSINPUT, CLASSOPTION AND
CLASSINFO CONTROLS

IEEEtran offers three catagories of special commands that
allow information to be passed between the class file and the
user’s document:

• CLASSINPUTs are inputs that provide a way to cus-
tomize the operation of IEEEtran by overriding some of
the default settings (at the time IEEEtran is loaded);

• CLASSOPTIONs which are outputs that allow for condi-
tional compilation based on which IEEEtran class options
have been selected;

• CLASSINFOs which are outputs that allow the user a
way to access additional information about the IEEEtran
runtime environment.

A. CLASSINPUTs

The available CLASSINPUTs include: \CLASSINPUTbase
linestretch which sets the line spacing of the document;
\CLASSINPUTinnersidemargin which sets the margin at
the inner (binding) edge; \CLASSINPUToutersidemargin
which sets the margin at the outer edge; \CLASSINPUTtopt
extmargin which sets the top margin; \CLASSINPUTbotto
mtextmargin which sets the bottom margin. Of course, such
parameters can be set via the traditional LATEX interface (\odd
sidemargin, \topmargin, etc.). However, the advantage of
of using the CLASSINPUT approach is that it allows IEEEtran
to adjust other internal parameters and perform any additional
calculations as needed. For example, setting the side margins
in LATEX requires a careful setting of \oddsidemargin, \e
vensidemargin and \textwidth taking into consideration
the paper size and whether or not duplex (two-sided) printing
is being used.

To invoke a CLASSINPUT, just define the relavant CLASS-
INPUT as desired prior to the loading of IEEEtran. For
example,

\newcommand{\CLASSINPUTinnersidemargin}{17mm}
\documentclass{IEEEtran}

will yield a document that has 17mm side margins—if only
one of the innerside/outerside (or toptext/bottomtext) margin
pair is specified, IEEEtran will assume the user wants sym-
metric side (or top/bottom) margins and will set both values
of the relavant pair to the (single) user specified value.

IEEEtran uses the fixed values of 12pt and 0.25in for \h

eadheight and \headsep, respectively. The position of
the header can be altered after IEEEtran is loaded, without
changing the margins as long as the sum of \topmargin,
\headheight and \headsep is preserved. For example, the
header can be shifted upwards 0.2in using:
\addtolength{\headsep}{0.2in}
\addtolength{\topmargin}{-0.2in}

Likewise, \footskip, which has a default value of 0.4in, can
easily be changed to alter the position of the footer within the
bottom margin.

When using \CLASSINPUTbaselinestretch, IEEEtran
will automatically “digitize” \textheight so that an integer
number of lines will fit on a page (as is done in the draft
modes). Digitization is not done when the top or bottom
margins are set via CLASSINPUTs. Users are cautioned that
using CLASSINPUT controls can result in documents that
are not compliant with the IEEE’s standards. The intended
applications include: (1) conferences or societies that have
unusual formatting requirements; (2) producing copies with
nonstandard margins such as when binding for personal use;
and (3) non-IEEE related work.

B. CLASSOPTIONs

CLASSOPTIONs are primarily TEX \if conditionals that
are automatically set based on which IEEEtran options are
being used. Thus, for example, a construct such as
\ifCLASSOPTIONconference
\typeout{in conference mode}

\else
\typeout{not in conference mode}

\fi

can be used to provide for conditional code execution. Please
note that, as mentioned in Section II-B, the draft and draft-
clsnofoot options imply draftcls. So, most users will want to
test \ifCLASSOPTIONdraftcls for detecting the draft
modes.

For the document’s point size options, \CLASSOPTIONp

t is defined as a macro that expands to the numerical part
of the selected point value (e.g., 9, 10, 11 or 12). For the
paper size options, \CLASSOPTIONpaper will be a macro
that contains the paper specification (e.g., letter, a4). To use
these as conditionals will require a string macro comparison:
\newcommand{\myninestring}{9}
\ifx\CLASSOPTIONpt\myninestring
\typeout{document is 9pt}

\fi

Users should treat the CLASSOPTIONs as being “read-only”
and not attempt to manually alter their values because IEEE-
tran uses them internally as flags to determine which options

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 5

have been selected—changing these flags will likely result in
improper formatting.

C. CLASSINFOs

The available CLASSINFOs include the \ifCLASSINFOp

df conditional which works much like Heiko Oberdiek’s if-
pdf.sty package [14] to indicate if PDF output (from pdfLATEX)
is in effect:
\ifCLASSINFOpdf
\typeout{PDF mode}

\fi

IEEEtran.cls also provides the lengths \CLASSINFOnorma

lsizebaselineskip, which is the \baselineskip of the
normalsize font, and \CLASSINFOnormalsizeunitybaseli

neskip, which is the \baselineskip of the normalsize font
under unity \baselinestetch.

Finally, there are the string macros (these are not condition-
als or lengths) \CLASSINFOpaperwidth and \CLASSINF
Opaperheight which contain the paper dimensions in their
native specifications including units (e.g., 8.5in, 22mm, etc.).
As with CLASSOPTIONs, users should not attempt to alter
the CLASSINFOs.

IV. THE TITLE PAGE

The parts of the document unique to the title area are created
using the standard LATEX command \maketitle. Before this
command is called, the author must declared all of the text
objects which are to appear in the title area.

A. Paper Title

The paper title is declared like:
\title{A Heuristic Coconut-based Algorithm}

in the standard LATEX manner. Titles are generally capitalized
except for words such as a, an, and, as, at, but, by, for, in, nor,
of, on, or, the, to and up, which are usually not capitalized
unless they are the first or last word of the title. Line breaks
(\\) may be used to equalize the length of the title lines. Do
not use math or other special symbols in the title.

B. Author Names

The name and associated information is declared with the
\author command. \author behaves slightly differently
depending on the document mode.

1) Names in Journal/Technote Mode: A typical \author
command for a journal or technote paper looks something like
this:
\author{Michael˜Shell,˜\IEEEmembership{Member,˜IEEE,
} John˜Doe,˜\IEEEmembership{Fellow,˜OSA,} and˜Jane˜D
oe,˜\IEEEmembership{Life˜Fellow,˜IEEE}%
\thanks{Manuscript received January 20, 2002; revise
d August 26, 2015. This work was supported by the IE
EE.}%
\thanks{M. Shell was with the Georgia Institute of T
echnology.}}

The \IEEEmembership command is used to produce the
italic font that indicates the authors’ IEEE membership status.

The \thanks command produces the “first footnotes.” Be-
cause the LATEX \thanks was not designed to contain multiple
paragraphs3, authors will have to use a separate \thanks

for each paragraph. However, if needed, regular line breaks
(\\) can be used within \thanks. In order to get proper line
breaks and spacing, it is important to correctly use and control
the spaces within \author. Use nonbreaking spaces (˜) to
ensure that name/membership pairs remain together. A minor,
but easy, mistake to make is to forget to prevent unwanted
spaces from getting between commands which use delimited
({}) arguments. Note the two % which serve to prevent the
code line break on lines ending in a } from becoming an
unwanted space. Such a space would not be ignored as an
end-of-line space because, technically, the last \thanks is
the final command on the line. “Phantom” spaces like these
would append to the end of the last author’s name, causing
the otherwise centered name line to shift very slightly to the
left.

2) Names in Conference Mode: The author name area
is more complex when in conference mode because it also
contains the authors’ affiliations. For this reason, when in
conference mode, the contents of \author{} are placed
into a modified tabular environment. The commands \IE

EEauthorblockN{} and \IEEEauthorblockA{} are also
provided so that it is easy to correctly format the author names
and affiliations, respectively. For papers with three or less
affiliations, a multicolumn format is preferred:

\author{\IEEEauthorblockN{Michael Shell}
\IEEEauthorblockA{School of Electrical and\\
Computer Engineering\\
Georgia Institute of Technology\\
Atlanta, Georgia 30332--0250\\
Email: mshell@ece.gatech.edu}
\and
\IEEEauthorblockN{Homer Simpson}
\IEEEauthorblockA{Twentieth Century Fox\\
Springfield, USA\\
Email: homer@thesimpsons.com}
\and
\IEEEauthorblockN{James Kirk\\
and Montgomery Scott}
\IEEEauthorblockA{Starfleet Academy\\
San Francisco, California 96678-2391\\
Telephone: (800) 555--1212\\
Fax: (888) 555--1212}}

Use \and to separate the affiliation columns. The columns
will automatically be centered with respect to each other and
the side margins.

If there are more than three authors and/or the text is too
wide to fit across the page, use an alternate long format:

\author{\IEEEauthorblockN{Michael Shell\IEEEauthorre
fmark{1}, Homer Simpson\IEEEauthorrefmark{2}, James K
irk\IEEEauthorrefmark{3}, Montgomery Scott\IEEEautho
rrefmark{3} and Eldon Tyrell\IEEEauthorrefmark{4}}
\IEEEauthorblockA{\IEEEauthorrefmark{1}School of Ele
ctrical and Computer Engineering\\
Georgia Institute of Technology, Atlanta, Georgia 30
332--0250\\
Email: mshell@ece.gatech.edu}
\IEEEauthorblockA{\IEEEauthorrefmark{2}Twentieth Cen
tury Fox, Springfield, USA\\
Email: homer@thesimpsons.com}

3Although IEEEtran.cls does support it, the standard classes do not.

6 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

\IEEEauthorblockA{\IEEEauthorrefmark{3}Starfleet Aca
demy, San Francisco, California 96678-2391\\
Telephone: (800) 555--1212, Fax: (888) 555--1212}
\IEEEauthorblockA{\IEEEauthorrefmark{4}Tyrell Inc.,
123 Replicant Street, Los Angeles, California 90210

--4321}}

The \IEEEauthorrefmark{} command will generate a foot-
note symbol corresponding to the number in its argument. Use
this to link the author names to their respective affiliations. It is
not necessary prevent spaces from being between the \IEEEa

uthorblock’s because each block starts a new group of lines
and LATEX will ignore spaces at the very end and beginning of
lines.

3) Names in Compsoc Journal Mode: One unique feature
of IEEE Computer Society journals is that author affiliations
are formatted in an itemized list within the first (\thanks)
footnote. In compsoc mode, IEEEtran provides a special form
of \thanks, \IEEEcompsocitemizethanks, to obtain this
effect:
\author{Michael˜Shell,˜\IEEEmembership{Member,˜IEEE,
} John˜Doe,˜\IEEEmembership{Fellow,˜OSA,} and˜Jane˜D
oe,˜\IEEEmembership{Life˜Fellow,˜IEEE}%
\IEEEcompsocitemizethanks{\IEEEcompsocthanksitem M.
Shell is with the Georgia Institute of Technology.
\IEEEcompsocthanksitem J. Doe and J. Doe are with An
onymous University.}%
\thanks{Manuscript received January 20, 2002; revise
d August 26, 2015.}}

Within \IEEEcompsocitemizethanks, \IEEEcompsoctha
nksitem works like \item to provide a bulleted affiliation
group. To facilitate dual compilation, in non-compsoc mode,
IEEEtran treats \IEEEcompsocitemizethanks as \thanks
and sets \IEEEcompsocthanksitem to generate a line break
with indentation. However, this is not entirely satisfactory as
IEEE Computer Society journals place the author affiliations
before the “manuscript received” line while traditional IEEE
journals use the reverse order. If correct dual compilation is
needed, the CLASSOPTION conditionals can be employed to
swap the order as needed.

4) Names in Compsoc Conference Mode: Names in comp-
soc conference mode are done in the same way as traditional
conference mode.

5) Names in Transmag Journal Mode: IEEE TRANSAC-
TIONS ON MAGNETICS papers typically use the conference
long format for author names, but try to keep each name and
address pair on one line and without any email addresses or
phone numbers. Also, \thanks is available under transmag
journal mode even though the names are entered much like
the long format under conference mode. See the file bare_

jrnl_transmag.tex for an example of author entry under
transmag mode.

C. Running Headings

The running headings are declared with the \markboth{

}{} command. The first argument contains the journal name
information and the second contains the author name and paper
title. For example:
\markboth{Journal of Quantum Telecommunications,˜Vol
.˜1, No.˜1,˜January˜2025}{Shell \MakeLowercase{\text
it{et al.}}: A Novel Tin Can Link}

Note that because the text in the running headings is automat-
ically capitalized, the \MakeLowercase{} command must be
used to obtain lower case text. The second argument is used
as a page heading only for the odd number pages after the
title page for two sided (duplex) journal papers. This page is
such an example. Technote papers do not utilize the second
argument. Conference papers do not have running headings,
so \markboth{}{} has no effect when in conference mode.
Authors should not put any name information in the headings
(if used) of anonymous peer review papers.

D. Publication ID Marks

Publication ID marks can be placed on the title page of
journal and technote papers via the \IEEEpubid{} command:

\IEEEpubid{0000--0000/00\$00.00˜\copyright˜2015 IEEE
}

Although authors do not yet have a valid publication ID at the
time of paper submission, \IEEEpubid{} is useful because it
provides a means to see how much of the title page text area
will be unavailable in the final publication. This is especially
important in technote papers because, in some journals, the
publication ID space can consume more than one text line. If
\IEEEpubid{} is used, a second command, \IEEEpubidad
jcol must be issued somewhere in the second column of the
title page. This is needed because LATEX resets the text height
at the beginning of each column. \IEEEpubidadjcol “pulls
up” the text in the second column to prevent it from blindly
running into the publication ID.

Publication IDs are not to be placed by the author on camera
ready conference papers so \IEEEpubid{} is disabled in
conference mode. Instead the bottom margin is automatically
increased by IEEEtran when in conference mode to give the
IEEE room for such marks at the time of publication. In draft
mode, the publisher ID mark will not be printed at the bottom
of the titlepage, but room will be cleared for it.

Publication ID marks are perhaps less important with comp-
soc papers because IEEE Computer Society journals place the
publisher ID marks within the bottom margin so as not to
affect the amount of page space available for text.

E. Special Paper Notices

Special paper notices, such as for invited papers, can be
declared with:

\IEEEspecialpapernotice{(Invited Paper)}

Special paper notices in journal and technote papers appear
between the author names and the main text. The title page
of this document has an example. For conference papers, the
special paper notice is placed between the title and the author
names.

Much more rarely, there is sometimes a need to gain access
to the space across both columns just above the main text.
For instance, a paper may have a dedication [15]. IEEEtran
provides the command \IEEEaftertitletext{} which can
be used to insert text or to alter the spacing between the title
area and the main text:

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 7

\IEEEaftertitletext{\vspace{-1\baselineskip}}

Authors should be aware that IEEEtran carefully calculates
the spacing between the title area and main text to ensure that
the main text height of the first page always is equal to an
integer number of normal sized lines (unless the top or bottom
margins have been overridden by CLASSINPUTs). Failure to
do this can result in underfull vbox errors and paragraphs
being “pulled apart” in the second column of the first page
if there isn’t any rubber lengths (such as those around section
headings) in that column. The contents of \IEEEaftertitle
text{} are intentionally allowed to bypass this “dynamically
determined title spacing” mechanism, so authors may have to
manually tweak the height (by a few points) of the \IEEEa

ftertitletext{} contents (if used) to avoid an underfull
vbox warning.

V. ABSTRACT AND INDEX TERMS

The abstract is generally the first part of a paper after \m
aketitle. The abstract text is placed within the abstract
environment:

\begin{abstract}
We propose ...
\end{abstract}

Math, special symbols and/or citations should generally not
be used in abstracts.4

Journal and technote papers also have a list of key words
(index terms) which can be declared with:

\begin{IEEEkeywords}
Broad band networks, quality of service, WDM.
\end{IEEEkeywords}

To obtain a list of valid keywords from the IEEE, just send a
blank email to keywords@ieee.org. A list of IEEE Computer
Society approved keywords can be obtained at http://www.
computer.org/mc/keywords/keywords.htm. Do not use math or
special symbols in the keywords.

The IEEE Computer Society and IEEE TRANSACTIONS ON
MAGNETICS formats present a difficulty in that compsoc and
transmag journal (but not compsoc conference) papers place
the abstract and index terms sections in single column format
just below the author names, but the other IEEE formats place
them in the first column of the main text before the first
section. To handle this, IEEEtran offers a command, \IEEEt
itleabstractindextext, that is to be declared before \ma

ketitle, and whose single argument holds the text/sections
that are to appear in single column format after the author
names:

\IEEEtitleabstractindextext{%
\begin{abstract}
We propose ...
\end{abstract}
\begin{IEEEkeywords}
Broad band networks, quality of service, WDM.
\end{IEEEkeywords}}

4That said, if it is permitted or required, be aware that in order to preserve
the distinction between constructs such as vector and scalar forms, IEEEtran
defaults to using non-bold math within the abstract. However, bold math better
matches the bold text font used for the abstract text. If a bold math font is
desired, just issue a \boldmath command at the start of the abstract.

To facilitate dual compilation, IEEEtran provides another
command, \IEEEdisplaynontitleabstractindextext,
which will “become” whatever was declared in \IEEEtitl

eabstractindextext when in non-compsoc, non-transmag
or conference mode (as compsoc conferences use the same
placement for the abstract and index terms as traditional
conferences do). That is to say, the abstract and index terms
sections can be automatically “teleported’ to the appropriate
place they need to be depending on the document mode. \IE
EEdisplaynontitleabstractindextext should typically
be placed just after \maketitle (and before \IEEEpeerre

viewmaketitle if used).

VI. SECTIONS

Sections and their headings are declared in the usual LATEX
fashion via \section, \subsection, \subsubsection,
and \paragraph. In the non-compsoc modes, the numbering
for these sections is in upper case Roman numerals, upper case
letters, Arabic numerals and lower case letters, respectively.
In compsoc mode, Arabic numerals are used exclusively for
(sub)section numbering.

The \paragraph section is not allowed for technotes or
compsoc conferences as these generally are not permitted to
have such a deep section nesting depth. If needed, \paragra
ph can be restored by issuing the command \setcounter{

secnumdepth}{4} in the document preamble.
Note that IEEE Computer Society journals (but not con-

ferences!) are unusual in that they raise the very first section
(the introduction) heading above the start of the text. IEEEtran
provides a command to produce this effect:

\IEEEraisesectionheading{\section{Introduction}\labe
l{sec:introduction}}

This command is not intended for any use other than the
introduction section in compsoc journal mode. Note the need
to keep any \label that is to refer to the section immediately
after \section in the above as \IEEEraisesectionheadi
ng puts \section within a raised box.

A. Initial Drop Cap Letter

The first letter of a journal paper is a large, capital, oversized
letter which descends one line below the baseline. Such a
letter is called a “drop cap” letter. The other letters in the first
word are rendered in upper case. This effect can be accurately
produced using the IEEEtran command \IEEEPARstart{}{

}. The first argument is the first letter of the first word, the
second argument contains the remaining letters of the first
word. The drop cap of this document was produced with:

\IEEEPARstart{W}{ith}

Note that some journals will also render the second word in
upper case—especially if the first word is very short. For more
usage examples, see the bare_jrnl.tex example file.

http://www.computer.org/mc/keywords/keywords.htm
http://www.computer.org/mc/keywords/keywords.htm

8 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

VII. CITATIONS

Citations are made with the \cite command as usual.
IEEEtran will produce citation numbers that are individually
bracketed in IEEE style. (“[1], [5]” as opposed to the more
common “[1, 5]” form.) The base IEEEtran does not sort or
produce compressed “ranges” when there are three or more
adjacent citation numbers. However, IEEEtran pre-defines
some format control macros to facilitate easy use with Donald
Arseneau’s cite.sty package [16]. So, all an author has to do
is to call cite.sty:

\usepackage{cite}

and the adjacent citation numbers will automatically be sorted
and compressed (ranged) IEEE style. (Of course, multiple
adjacent citations should always all be declared within a
single \cite, comma separated, for this to work.) Invoke
cite.sty’s noadjust option to prevent an unwanted leading space
from occurring should a citation ever need to be enclosed in
parenthesis.

One complication in compsoc mode is that the IEEE
Computer Society does not compress, but does sort, adjacent
citation numbers. Version 4.0 and later of cite.sty provides a
nocompress option that disables compression, but preserves
sorting. Thus,

\ifCLASSOPTIONcompsoc
% requires cite.sty v4.0 or later (November 2003)
\usepackage[nocompress]{cite}

\else
\usepackage{cite}

\fi

can be used with universal applicability.
Note that, if needed (e.g., next to a non-punctuation, non-

space character), cite.sty’s \cite command will automatically
add a leading space. i.e., “(\cite{mshell01})” will become
like “([1])”. If this behavior is not desired, use the cite
package’s noadjust option (cite.sty V3.8 and later) which will
turn off the added spaces:

\usepackage[noadjust]{cite}

\cite also allows for an optional note (e.g., \cite[Th.
7.1]{mshell01}). If the \cite with note has more than

one reference, the note will be applied to the last of the listed
references. It is generally desirable that if a note is given, only
one reference should be listed in that \cite.

VIII. EQUATIONS

Equations are created using the traditional equation envi-
ronment:

\begin{equation}
\label{eqn_example}
x = \sum\limits_{i=0}^{z} 2^{i}Q
\end{equation}

which yields

x =

z∑
i=0

2iQ. (1)

Use the displaymath environment instead if no equation
number is desired. When referring to equations, articles in

IEEE publications do not typically use the word “equation,”
but rather just enclose the equation number in parentheses,
e.g.,

... as can be seen in (\ref{eqn_example}).

IEEE’s two column format puts serious constraints on how
wide an equation can be. So, a fair portion of the effort in
formatting equations usually has to be devoted to properly
breaking them. It is the author’s responsibility to ensure
that all equations fit into the given column width. In rare
circumstances, it is possible to have a few equations that span
both columns (see Section X-D1), but the vast majority of
over-length equations have to be broken across multiple lines.

IX. MULTI-LINE EQUATIONS

Perhaps the most convenient and popular way to pro-
duce multiline equations is LATEX 2ε’s eqnarray environment.
However, eqnarray has several serious shortcomings:

1) the use of 2×\arraycolsep for a column separation
space does not provide natural math spacing in the
default configuration;

2) column definitions cannot be altered;
3) it is limited to three alignment columns;
4) column alignment cannot be overridden within individ-

ual cells.

There are a number of vastly superior packages for format-
ting multiline mathematics. Perhaps the most popular is the
amsmath package [11]. Amsmath is a comprehensive work
which contains many helpful tools besides enhanced multiline
alignment environments. So, all authors should give serious
consideration to its use—regardless of what they use to gen-
erate aligned equations. One thing to be aware of is that, upon
loading, amsmath will configure LATEX to disallow page breaks
within multiline equations (even within non-amsmath defined
environments). The philosophy here is that author should
manually insert breaks where desired so as to ensure that
breaks occur only at acceptable points. To restore IEEEtran’s
ability to automatically break within multiline equations, load
amsmath like:

\usepackage{amsmath}
\interdisplaylinepenalty=2500

Another extremely powerful set of alignment tools, one
of which is a totally rewritten eqnarray environment, is
provided by mathenv.sty which is part of Mark Wooding’s
MDW Tools [17].

Finally, IEEEtran provides a fully integrated custom IEEEe-
qnarray family of commands (see Appendix F) that are de-
signed to have almost universal applicability for many different
types of alignment situations.

Nevertheless, it is instructive to show a simple example
using the standard eqnarray in order to explain some of
the fine points of math spacing under LATEX. As shown in
Table I, TEX normally draws from four different spacings when
typesetting mathematics. In order to produce precise (and

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 9

TABLE I
MATH SPACINGS USED BY LATEX

Size Width Cmd. Used for Example

small 1/6 em \, symbols a b

medium 2/9 em \: binary operators a+ b

large 5/18 em \; relational operators a = b

negative small −1/6 em \! misc. uses ab

correct) mathematical alignments, it is crucial to understand
how to control such spacing. Consider a multiline equation

Z = x1 + x2 + x3 + x4 + x5 + x6

+a+ b (1)
+a+ b (2)
+ a+ b (3)
+ a+ b (4)

(in typical IEEE style) which was produced by
\setlength{\arraycolsep}{0.0em}
\begin{eqnarray}
Z&{}={}&x_1 + x_2 + x_3 + x_4 + x_5 + x_6\nonumber\\
&&+a + b\\
&&+{}a + b\\
&&{}+a + b\\
&&{+}\:a + b
\end{eqnarray}
\setlength{\arraycolsep}{5pt}

Lines one through four show some possible ways the + a+ b
line could be implemented.5 Only number four is the correct
way for most IEEE purposes. In TEX’s math mode, spacing
around operators can be inhibited by enclosing them within
braces (e.g., {=}) or forced by surrounding them with “empty
ords” (e.g., {}={}). It is important to understand that the
empty ords do not have width themselves. However, their
presence causes TEX to place space around the operators as if
they were “next to something.” With this in mind, the first step
in the example is to set \arraycolsep to zero to prevent eq
narray from putting in the unwanted, artificial, inter-column
spacing. Placing empty ords around the equal sign then forces
the correct natural spacing. Alternatively, \arraycolsep
could have been set to 0.14 em and the empty ords around the
equal sign eliminated.6 It is important to remember to restore
\arraycolsep to its default value of 5 pt after the eqnarr
ay is complete as other environments (such as array) depend
on it. (Alternatively, the structure could have been enclosed in
a group of braces to keep the change local—which has the
added advantage of not requiring that the user remember what
the correct default value is.)

The first line is incorrect because a is being indicated as
a positive quantity rather than something that must be added
to the previous line. (i.e., the + is being treated as a unary,
rather than a binary, operator.) In line two, adding an empty
ord to the right side of the plus sign does nothing, except
to demonstrate that empty ords have zero width. Adding an

5In this example, the equation numbering system is (ab)used to identify
lines.

6This assumes that 1 em in the text font has the same width as 1 em in the
math font. For the standard fonts, this is indeed the case.

empty ord to the left side of the plus sign (line three) does
engage binary spacing, but causes an unwanted7 right shift
of the line. Finally, manually adding a medium space to the
right side only of the plus sign in line four does the trick. The
suppression of automatic spacing around the plus sign ({+}) is
unneeded in this case, but may be required in other alignment
environments that “expand” such operators by default.

Another way around the spacing problem is to use only
two alignment columns (as is done by amsmath.sty’s \alig
n). e.g., in the previous example, “Z =” would be contained
in the first column.

A. Cases Structures

Incidentally, the numcases (or subnumcases) environ-
ments in Donald Arseneau’s cases.sty package [18] should be
used when “cases” structures in which each branch can be
referenced with a different equation (or subequation) number
are needed:

|x| =
{
x, for x ≥ 0 (5a)
−x, for x < 0 (5b)

because those built from the array or amsmath cases envi-
ronments will have a single equation number that encompasses
both branches.

Be aware that if amsmath (which will be automatically
loaded under comsoc mode if the user did not do so) is to
be used with cases.sty, the latter should be loaded after the
former or else an error “Command \subequations alr
eady defined” may occur.

X. FLOATING STRUCTURES

Authors should keep in mind when choosing an appropriate
optional placement argument for the figure/table environments
that most IEEE journals strongly favor the positioning of
floats to the top of the page and rarely, if ever, use bottom
floats. IEEE Computer Society journals also favor top floats,
but do occasionally employ bottom floats. Furthermore, IEEE
journals never place floats in the first column of the first page
and rarely (if ever) do they do so in the second column of
the first page. Middle in-text placement (“here”) is usually
not used for IEEE work with one notable exception—IEEE
Computer Society conferences.

Note that LATEX 2ε’s float routine places footnotes above
bottom floats. To change this so that footnotes appear below
the bottom floats (as the IEEE does) invoke the \fnbelowflo
at command provided by Sigitas Tolušis’ stfloats package [19]
(see Section X-D for more features of the stfloats package).

A. Figures

Figures handled in the standard LATEX manner. For example:

\begin{figure}[!t]
\centering
\includegraphics[width=2.5in]{myfigure}
\caption{Simulation results for the network.}

7The IEEE normally wants all of the lines left aligned, but there are cases
when such an indention may be desirable.

10 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

\label{fig_sim}
\end{figure}

Note that (1) figures should be centered via the LATEX \cent

ering command—this is a better approach than using the ce

nter environment which adds unwanted vertical spacing; (2)
the caption follows the graphic; and (3) any labels must be
declared after (or within) the caption command.

When referring to figures in typical IEEE papers, authors
should use the abbreviation “Fig.”, but in IEEE Computer
Society conference papers they should use the full word
“Figure”. IEEEtran provides the string macro \figurename

which contains the correct name to use for the given formatting
mode.

The \includegraphics command is the modern, pre-
ferred, way of including images and provides a flexible in-
terface that makes it easy to scale graphics to size. To use it,
the graphics or graphicx (the latter is recommended) must first
be loaded.

It is strongly recommended that authors be familiar with the
graphics package documentation [20] as well as Keith Reck-
dahl’s excellent Using Imported Graphics in LATEX 2ε [21]. The
reader is reminded that the “draftcls” or “draftclsnofoot”, not
“draft”, class option must be selected in order to get draft
papers with visible figures.

As explained in Appendix D, Encapsulated PostScript (EPS)
or Portable Document Format (PDF) is the preferred graph-
ics format for LATEX work. Furthermore, the user’s draw-
ing/graphing application should be capable of outputing di-
rectly in EPS (or PDF) vector form (which will not degrade
or pixelize when magnified)—although photos will likely have
to be in (EPS/PDF/JPEG/PNG) bitmap form. Be aware that the
use of pdfLATEX is required for image formats other than EPS.

The psfrag package [22] might also be of interest. Psfrag
allows the user to “go into” an EPS graphic and replace text
strings contained in it with real LATEX code. In this manner,
LATEX’s extensive support of mathematical symbols and fonts
can be extended to figures made with applications with more
modest glyph support. Using psfrag does require the use of the
dvips DVI to PostScript conversion step (not pdfLATEX’s PDF
mode) as some of the features of the PostScript language have
to be utilized.8 pdfLATEX users can use psfrag by “preprocess-
ing” their figures by importing them into a dummy document
using psfrag, running LATEX followed by dvips, then converting
the PostScript output to a PDF graphic for direct importation
into the main document which is then processed by pdfLATEX.
There is additional usage information on psfrag in the Using
Imported Graphics in LATEX 2ε guide [21].

1) Subfigures: Subfigures can be obtain via the use of
Steven Douglas Cochran’s subfigure [23] or subfig [24] pack-
ages. Be forewarned that the former is no longer being
maintained and, although self-contained and compatible with
IEEEtran, is becoming incompatible with an increasing num-
ber of other LATEX packages including fixltx2e.sty. For this
reason, subfigure.sty is not recommended for new work and
will not be covered here.

8PDF is much like a subset of PostScript—the latter is a Turing complete
programming language, the former is not.

It is important to note that subfig.sty package options are
usually required to obtain IEEE compliant subfigure captions.
Furthermore, compsoc format requires a larger sans serif font
than the serif footnote size font used in traditional IEEE for-
matting. There is a further complication with subfig.sty in that
this package depends on caption.sty, which, in its default con-
figuration, will overrride IEEEtran’s handling of captions—
resulting in non-IEEE style main captions. To prevent this,
be sure to invoke subfig.sty’s caption=false option, which
has been available since version 1.3 (2005/06/28). Thus, the
recommended way to load subfig.sty is:

\ifCLASSOPTIONcompsoc
\usepackage[caption=false,font=normalsize,labelfon

t=sf,textfont=sf]{subfig}
\else

\usepackage[caption=false,font=footnotesize]{subfi
g}
\fi

Because multiple subfigures usually require more width than
is available in a single column, they are often used within the
double column figure environment (Section X-D):

\begin{figure*}[!t]
\centering
\subfloat[Case I]{\includegraphics[width=2.5in]{subf
igcase1}
\label{fig_first_case}}
\hfil
\subfloat[Case II]{\includegraphics[width=2.5in]{sub
figcase2}
\label{fig_second_case}}
\caption{Simulation results for the network.}
\label{fig_sim}
\end{figure*}

Note how captions can be tagged to each of the subfigures as
well as to the overall figure via an optional argument to the \s
ubfloat command. However, most IEEE authors/journals do
not employ subfigure captions, but instead reference/describe
all of the subfigures (a), (b), etc., within the main caption. Be
aware that for subfig.sty to generate the (a), (b), etc., subfigure
labels the optional argument to \subfloat must be present.
If a subcaption is not desired, just leave its contents blank
(e.g., \subfloat[]). \hfil is used as a subfigure separator
to achieve equal spacing around the graphics. More complex
implementations are possible. Note that the total width of all
the subfigures on a line must be less than the text width or else
an unwanted line break will occur. Multiple lines of subfigures
can be used within a figure if needed. See the subfig.sty
documentation as well as the Using Imported Graphics in
LATEX 2ε guide [21] for more details.

Axel Sommerfeldt’s modern and actively maintained sub-
caption.sty package [25] can not be recommended at this time
because it does not provide an option to prevent the underlying
caption.sty from taking control of main caption formatting
away from IEEEtran.

B. Algorithms

IEEE publications use the figure environment to contain
algorithms that are not to be a part of the main text flow.
Peter Williams’ and Rogerio Brito’s algorithmic.sty package
[26] or Szász János’ algorithmicx.sty package [27] (the latter is

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 11

TABLE II
A SIMPLE EXAMPLE TABLE

First Next

1.0 2.0

designed to be more customizable than the former) may be of
help in producing algorithm-like structures (although authors
are of course free to use whatever LATEX commands they are
most comfortable with in this regard). However, do not use
the floating algorithm environment of algorithm.sty (also by
Williams and Brito) or algorithm2e.sty (by Christophe Fiorio)
as the only floating structures IEEE uses are figures and tables.
Furthermore, IEEEtran will not be in control of the (non-IEEE)
caption style produced by the algorithm.sty or algorithm2e.sty
float environments.

C. Tables

Tables are handled in a similar fashion, but with a few
notable differences. For example, the code
\begin{table}[!t]
\renewcommand{\arraystretch}{1.3}
\caption{A Simple Example Table}
\label{table_example}
\centering
\begin{tabular}{c||c}
\hline
\bfseries First & \bfseries Next\\
\hline\hline
1.0 & 2.0\\
\hline
\end{tabular}
\end{table}

results in Table II. Note that the IEEE places table captions
before the tables and, given that they serve much like titles,
are usually capitalized except for words such as a, an, and, as,
at, but, by, for, in, nor, of, on, or, the, to and up, which are
usually not capitalized unless they are the first or last word of
the caption.

Be aware that, to prevent a change of meaning that would
result from case changes, the IEEE generally uses the standard
text font, not the small caps font, when rendering units as well
as letters in math in table captions. This can be achieved via
the use of \upshape:
\caption{Diagnosis of Rotor Faults in a DRFOC Drive U
sing the VCT(Flux Loop Bandwidth (FLB) = 10 {\upshap
e Hz}; 75% Load; 1450 {\upshape r/min})}

Thanks to Zhaowen Hou for providing information on this
topic as well as the above example.

Within the table environment, the default text size is foot-
notesize which is what IEEE typically uses for tables. When
using the tabular environment to construct tables, it is usually
a good idea to increase the value of \arraystretch above
unity to “open up” the table rows a tad. Also, IEEE often
uses tables with “open sides,” (without vertical lines along
each side) although the “closed side” form (e.g., Table I) is
more commonly used for the tables within this document.

Unfortunately, the standard LATEX 2ε tabular environment
has a number of shortcomings. Two notable problems are (1)

TABLE III
THE SKEWING ANGLES (β) FOR Mu(H) + X2

AND Mu(H) + HX a

H(Mu) + F2 H(Mu) + Cl2

β(H) 80.9◦b 83.2◦

β(Mu) 86.7◦ 87.7◦

a for the abstraction reaction, Mu + HX →
MuH + X.

b 1 degree = π/180 radians.

the corners where lines meet are improperly formed; and (2) it
is not very flexible in terms of user control. For these reasons,
authors are urged to look into some of the other packages
for making tables. A good one that provides revised “drop-in
replacements” for both the tabular and array environments is
Frank Mittelbach’s and David Carlisle’s array package [28].
Even more powerful (and complex) is the tabular and array
environments provided by the mdwtab.sty package which is
part of Mark Wooding’s MDW Tools [17].

As an alternative, IEEEtran offers the IEEEeqnarraybox
command which can also be used to produce tables9 of high
quality. See Appendix F for more details.

1) Footnotes Within Tables: Footnotes normally cannot be
placed directly within some commands and environments such
as \parbox, tabular, etc., because they become “trapped”
inside. One way around this is to split the place the footnote
marker (\footnotemark) is located (within the table) from
where the footnote text itself is declared (outside of the table
using \footnotetext).

Another approach is to use the footnote.sty package (which
is part of Mark Wooding’s MDW Tools [17]) which allows
environments to be configured so as not to trap footnotes:
\usepackage{footnote}
\makesavenoteenv{tabular}

Note that is probably not a good idea to use footnotes in
floating structures (like table) because the position of each
can move relative to one another. To put the footnote at the
end of a table instead of at the bottom of the page, just
enclose tabular, etc., inside a minipage (no footnote package
needed). A very good approach for handling footnotes within
tables (including those that float) is to use Donald Arseneau’s
threeparttable package [29] which was used to generate Table
III (the code of which is an example in the threeparttable.sty
file).

D. Double Column Floats

LATEX’s figure* and table* environments produce fig-
ures and tables that span both columns. This capability is
sometimes needed for structures that are too wide for a single
column.

It is a limitation of the LATEX 2ε kernel that double column
floats cannot be placed at the bottom of pages. That is to
say “\begin{figure*}[!b]” will not normally work as
intended. Authors that need this capability should obtain and
load Sigitas Tolušis’ stfloats package [19] which patches the

9Table I was made using this command.

12 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

LATEX 2ε output routine to allow it to handle double column
floats at the bottom of pages. Please note that stfloats is a
very invasive package which may not work with versions of
LATEX other than the standard LATEX 2ε release and may cause
problems with other packages that modify the output and/or
float routines (such as those that balance columns, alter the
placement of floating figures, etc.). IEEE authors are warned
not to use packages that allow material to be placed across the
middle of the two text columns (such as cuted.sty, midfloat.sty,
etc.) as the IEEE does not do this.

Another LATEX 2ε limitation (patched with stfloats or not) is
that double column floats will not appear on the same page
where they are defined. So, the user will have to define such
things prior to the page on which they are to (possibly) appear.

LATEX 2ε (patched with stfloats or not) does not attempt
to keep double and single column floats in sequence with
each other. This can be fixed by loading Frank Mittelbach,
David Carlisle and Chris Rowley’s fixltx2e package (already
installed on most LATEX systems) [30]. Note that fixltx2e.sty
is the replacement (and superset) of the older fix2col.sty [30].
However, fixltx2e/fix2col should not be used with the stfloats
package as they both modify some of the same float routines
in different ways.

Be aware that LATEX 2ε kernels dated 2015 and later have
fixltx2e.sty’s corrections already built into the system in which
case a warning will be issued if an attempt is made to load
fixltx2e.sty as it is no longer needed.

Morten Høgholm’s dblfloatfix package [31] provides the
combined functionality of both the fixltx2e and stfloats pack-
ages and is now the recommended way to obtain these features.

Finally, authors should also be aware that the LATEX 2ε ker-
nel (patched with stfloats or not) has a long standing limitation
in that it will not allow rubber space that spans both columns
to stretch or shrink as needed for each of the two main text
columns. Therefore, it is possible for double column floats to
cause underfull vbox errors because the remaining text height
may not be equal to an integer number of normal size lines.
The problem can occur in main text columns (on pages with
double column floats) that do not have vertical rubber spacing
(such as that around section headings, equations, etc.) and
results in underfull vbox warnings coupled with paragraphs
that are “pulled apart” from each other. To correct this, users
can manually tweak the amount of space between the double
column structure and main text by inserting a command like

\vspace*{-3pt}

(adjusted as needed) within the double column structure. Inci-
dentally, IEEEtran automatically compensates for this problem
when forming the paper title.

1) Double Column Equations: It is possible, but not pleas-
ant, to use figure* to obtain double column equations. The
IEEE rarely uses double column equations because they can
waste space, so this capability is easy to abuse. Authors
who are considering the use of a double column equation
should verify that there are a few examples of such in papers
previously published in the journal they plan to submit to.

There are complications. Although the IEEE does not place
constraints on the order of the double column equations

relative to the equations of the main text (that is to say a
set of double column equations can be at the top or bottom
of a page in which they would normally appear in the middle
had they been regular equations), the double column equation
numbers must increase as one progresses down the page (i.e.,
double column equations at the bottom of a page must be
of higher number than those at the top). Furthermore, double
column equations should appear on the same page where they
are referenced (on the page they would have appeared had
they been regular equations). Compounding the difficulty even
further is the fact that LATEX 2ε will not place double column
equations on the same page on which they are defined. Finally,
the IEEE does not generally allow other figures or tables to
come between the double column equations and the main text
(which are separated from each other by a rule). All of this
means that the place where a double column equation must be
defined has to be “disconnected” from the place where it will
eventually be referred to in the text—and the user will have
to manually intervene in the equation numbering system.

Therefore, users have to (1) define double column equations
on the page prior to the one that they are to appear; (2) reset
the equation counter when the double column equations are
defined so as not to disturb the regular equation numbers;
(3) manually set the double column equation numbers and (4)
increment the equation counter at the point the double column
equations are referenced in the text so that they are accounted
for in the numbering of the regular equations after that point.

To do all of this, it is convenient to have a “scratch pad”
counter to temporarily save equation numbers. This can be
done via a command such as

\newcounter{MYtempeqncnt}

in the preamble of the document. Now, the double column
equations are defined on the page prior to the one in which
they are to appear (and in this example supposed that they are
to be equation numbers six and seven):

\begin{figure*}[!t]
% ensure that we have normalsize text
\normalsize
% Store the current equation number.
\setcounter{MYtempeqncnt}{\value{equation}}
% Set the equation number to one less than the one
% desired for the first equation here.
% The value here will have to changed if equations
% are added or removed prior to the place these
% equations are referenced in the main text.
\setcounter{equation}{5}
\begin{equation}
\label{eqn_dbl_x}
x = 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21+ 23 + 25
+ 27 + 29 + 31
\end{equation}
\begin{equation}
\label{eqn_dbl_y}
y = 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20+ 22 + 24
+ 26 + 28 + 30
\end{equation}
% Restore the current equation number.
\setcounter{equation}{\value{MYtempeqncnt}}
% The IEEE uses as a separator
\hrulefill
% The spacer can be tweaked to stop underfull vboxes.
\vspace*{4pt}
\end{figure*}

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 13

x = 5 + 7 + 9 + 11 + 13 + 15 + 17 + 19 + 21 + 23 + 25 + 27 + 29 + 31 (6)

y = 4 + 6 + 8 + 10 + 12 + 14 + 16 + 18 + 20 + 22 + 24 + 26 + 28 + 30 (7)

The result of which is shown at the top of this page. This
technique allows the definition of the equations to be posi-
tioned arbitrarily as needed so that the (floating) equations
will appear where desired. The “[!t]” option forces LATEX to
do its best to place the equations at the top of the next page.
Had it been “[!b]” instead, then the stfloats (or even better,
dblfloatfix) package would need to be loaded and the \vspac

e command, followed by the \hrulefill command, would
have to occur before the equations in the figure.

The double column equations can then been referenced in
the main text like:

% The previous equation was number five.
% Account for the double column equations here.
\addtocounter{equation}{2}
As can be seen in (\ref{eqn_dbl_x}) and
(\ref{eqn_dbl_y}) at the top of the page ...

Thankfully, double column equations are rare.

XI. LISTS

The traditional LATEX itemize, enumerate and description
(IED) list environments are ill-suited for producing the style
of lists used in IEEE publications. The main problem is that
they do not provide the user a means for controlling the
parameters of the resultant list. Furthermore, making global
changes to the parameters of the underlying \list will result
(often unexpectedly to a user) in the improper behavior of
other commands that depend on it, such as \quote. Finally,
LATEX’s \list considers the left margin of the list text to be
the reference point that determines how the list is positioned
relative to the left margin of the main text:

\labelwidth︷ ︸︸ ︷
Label

\labelsep︷ ︸︸ ︷
︸ ︷︷ ︸

\leftmargin

List Text

This contrasts with IEEE lists which use the label box as
the reference point for the list structure. i.e., for a given
circumstance, the list labels will be indented by a certain
amount, the list text block will be indented from the label
boxes by a given amount and these spacings will determine
the position of the list text.

For these reasons, IEEEtran provides enhanced IED list
environments that make it much easier to produce IEEE style
lists. The underlying \list remains the same as in traditional
LATEX so as not to break code that depends upon it. IEEEtran
uses a new length variable, \IEEElabelindent, so that users
can specify IED list structures directly in IEEE fashion:

︸ ︷︷ ︸
\IEEElabelindent

\labelwidth︷ ︸︸ ︷
Label

\labelsep︷ ︸︸ ︷
List Text

The IEEEtran IED lists ignore all “external” changes to the list
length parameters. Instead, IED lists are controlled exclusively
via two interfaces:

1) “global” control via the \IEEEiedlistdecl command;
and

2) “local” control via an optional argument that can be
provided to \itemize, \enumerate, and \descrip

tion.
For example, declaring
\renewcommand{\IEEEiedlistdecl}{\settowidth{\labelwi
dth}{Hello}}

in an IEEEtran document will set the default width of the
label boxes in all later IED lists to be equal to the width
of “Hello”. Note: Because setting a \labelwidth is so
commonly performed, IEEEtran provides a command: \IEEE
setlabelwidth{X} which is a shorter form of: \settowid
th{\labelwidth}{X}.

The local control is used if the parameters are to apply only
to an individual IED list:
\begin{itemize}[\IEEEsetlabelwidth{γ}]

Within an IED list, the local control is executed just after the
global control and therefore, the commands in the local control
can both augment and countermand those in the global control.
Please note that the code in the local and global controls are
executed in the same manner as normal LATEX code. Therefore,
the user should ensure that unwanted blank spaces do not
appear in the controls. If a control definition is too long to
fit on one line, shield the end of lines with “%” to prevent
them from being interpreted as blanks (Section IV-B1 has
some information on this topic). Also, note that the LATEX
parser requires that braces be placed around commands with
optional arguments that are placed directly within the optional
arguments of other commands:
\begin{itemize}[{\mycmd[1]{example}}]

This IEEEtran IED implementation makes it easy to control
IED lists, even when they are deeply nested.

The default spacings the IED lists use are stored in various
length (not macro) commands. Changes to these “master”
defaults are rarely needed and should be done only at the
beginning of the document, not in the IED list controls. These
constants will now be briefly explained.
\IEEEilabelindent: This length is the default amount

the itemized list label boxes are indented from the left mar-
gin. The IEEE seems to use at least two different values.
For example, in the IEEE/OSA JOURNAL OF LIGHTWAVE
TECHNOLOGY and the IEEE JOURNAL ON SELECTED AR-
EAS IN COMMUNICATIONS, they tend to use an indention
equal to \parindent, while for IEEE TRANSACTIONS ON
COMMUNICATIONS they tend to indent itemized lists a little
more (1.3\parindent). The shorter length is stored as \IE

14 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

EEilabelindentA and the longer as \IEEEilabelindent

B. The default is to use the shorter version. To use the longer
version do a
\setlength{\IEEEilabelindent}{\IEEEilabelindentB}

at the beginning of the document.
\IEEEelabelindent: This length is the default amount

the enumerated list label boxes are indented from the left
margin. Normally, the same as \parindent.
\IEEEdlabelindent: Ditto for description list labels. Nor-

mally, the same as \parindent.
\IEEEiednormlabelsep: This length is the normal de-

fault spacing between the IED list label boxes and the list
text.
\IEEEiedmathlabelsep: For nomenclature description

lists (a list of math symbols and their explanations), the IEEE
usually increases the separation between the terms and the
definitions. This length is set to the longer than normal length.
To invoke its use, just issue the command \IEEEusemathla

belsep in a list control.
\IEEEiedtopsep: This length is the extra vertical sepa-

ration put above and below each IED list. The IEEE usually
puts a little extra spacing around each list. However, this extra
spacing is barely noticeable.
\IEEElabelindentfactori through \IEEElabelin

dentfactorvi: These contain the factors by which the
effective \IEEElabelindent is reduced as the list nesting
depth increases. The IEEE normally decreases the amount of
indention as the list nesting level increases because there isn’t
much room to indent with two column text. IEEEtran has
an “automatic indention cut-back” feature that provides this
behavior. The actual amount the label boxes will be indented
is \IEEElabelindent multiplied by the \IEEElabelinden
tfactorX corresponding to the level of nesting depth (where
“X” is the nesting depth in roman numerals). This provides a
means by which the user can alter the effective \IEEElabel

indent for deeper levels. There may not be such a thing as
correct “standard IEEE” values. What the IEEE actually does
may depend on the specific circumstances. The first list level
almost always has full indention. The second levels usually
have only 75% of the normal indentation. Third level and
greater nestings are very rare, and probably don’t use any
indentation. These factors are not lengths, but rather constant
macros like \baselinestretch so \renewcommand should
be used if they need to be changed. The default values are
\IEEElabelindentfactori 1.0
\IEEElabelindentfactorii 0.75
\IEEElabelindentfactoriii 0.0
\IEEElabelindentfactoriv 0.0
\IEEElabelindentfactorv 0.0
\IEEElabelindentfactorvi 0.0

The use of these factors in IED lists may be suspended by
issuing the command \IEEEnolabelindentfactortrue in
a list control (which has the same effect as setting all the
indent factors to 1.0).

Normally, IEEEtran automatically calculates \leftmargin
based upon the current values of \IEEElabelindent, \labe
lwidth and \labelsep. To stop this auto-calculation so that
a manually specified value of \leftmargin is used instead,

just use \IEEEnocalcleftmargintrue in a list control. This
feature should not be needed during the course of normal IEEE
related work.

IEEEtran provides a means to manually specify the justifica-
tion within the IED list label boxes. The commands \IEEEied
labeljustifyl, \IEEEiedlabeljustifyc and \IEEEied

labeljustifyr can be used in a list control to justify the list
labels to the left, center, and right sides, respectively. Itemize
and enumerate lists automatically default to right justification,
while description defaults to left justification. The justification
commands should not be needed during the course of normal
IEEE related work.

In addition to modifying the behavior of itemize, enumer
ate and description, IEEEtran also provides the respective
aliases IEEEitemize, IEEEenumerate and IEEEdescript

ion, which provides a way for the user to access the IEEE
style list environments even in the event another package is
loaded that overrides the IED list environments. For special-
ized applications, the original LATEX IED list environments are
retained as LaTeXitemize, LaTeXenumerate and LaTeXde

scription.

A. Itemize

The itemized lists will normally automatically calculate the
width of whatever symbol the current list level is using so that
a user can just call \begin{itemize}...\end{itemize}
without doing anything special. Furthermore, the auto-label-
width feature will work properly even if \labelitemX has
been redefined (where “X” indicates “i,ii, .. iv”, whichever
is appropriate) before the list begins. However, if any item
symbols are to be specified via \item[X] (this is rare and may
well be nonstandard as far as IEEE related work is concerned),
then the following form can be used:

\begin{itemize}[\IEEEsetlabelwidth{Z}]
\item[X] blah
\item[Y] blah
.
.
\end{itemize}

where “Z” is the longest label in the list.

B. Enumerate

The important thing to note about enumerated lists is that
the \labelwidth will default to the length of “9)” in the
normal size and style. Therefore, the width of the longest label
will have to be manually specified if any of the following
conditions are true:

1) a top level list has more than 9 items;
2) a relevant \labelenumX or \theenumX has been rede-

fined;
3) \item[X] has been used to manually specify labels;
4) the labels are using a font that is not the normal size

and style;
5) the enumerated list is nested (i.e., not at the top level)

and is therefore not using Arabic digits as labels.
For example:

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 15

\begin{enumerate}[\IEEEsetlabelwidth{12)}]
\item blah
\item blah
.
.
% 12 items total
\end{enumerate}

C. Description

Generally speaking, the longest label width will always have
to be specified for description lists. Furthermore, the author
may wish to use \IEEEmathlabelsep for \labelsep when
building a math symbol list. For example:

\begin{description}[\IEEEsetlabelwidth{$\alpha\omega
\pi\theta\mu$}\IEEEusemathlabelsep]
\item[$\gamma\delta\beta$] Is the index of..
\item[$\alpha\omega\pi\theta\mu$] Gives the..
.
.
\end{description}

Sometimes it can be difficult to ascertain from inspection
which of the labels is the longest. For such cases, a little
diagnostic code may be helpful to measure a length and then
to display the result on the console:

\newlength{\mydiaglen} % put in preamble
.
.
\settowidth{\mydiaglen}{$\alpha\beta\gamma$}
\showthe\mydiaglen

XII. THEOREMS AND PROOFS

Theorems and related structures such as axioms, corollaries
and lemmas, are handled in the traditional LATEX fashion. The
user must first declare the structure name via the

\newtheorem{struct_type}{struct_title}[in_counter]

command where struct_type is the user chosen identifier
for the structure, struct_title is the heading that is used for
the structure and in_counter is an optional name of a counter
whose number will be displayed with the structure number
and whose update will reset the structure counter. Most IEEE
papers use sequential theorem numbering throughout the entire
work, so an in_counter is usually not specified. However,
those papers that do use in_counter usually use “section”
such that the section number is the first part of each theorem
number. After the structure is defined it can be used via

\begin{struct_type}[extra_title]
.
.
\end{struct_type}

where extra_title is an optional name that is displayed
with the structure.

For example, the most common way to do theorems would
be to use

\newtheorem{theorem}{Theorem}

followed as needed by environments like

\begin{theorem}[Einstein-Podolsky-Rosenberg]

Sometimes it is desirable that a structure share its counter
with another structure. This can be accomplished by using the
alternate form of \newtheorem

\newtheorem{struct_type}[num_like]{struct_title}

where num_like is the name of an existing structure.
IEEE theorem numbers are prefixed by the section number

they were defined in (e.g., 2.5). This presents a difficulty with
appendices (especially when numbered with Roman numerals)
because the theorem numbers will not be unique. To remedy
this, within Roman numbered appendices, IEEEtran will add
an “A” prefix (e.g., A2.5). For Alpha number appendices,
theorem numbering is more straightforward (e.g., A.5, B.5,
etc.). For a single appendix, a constant “A” prefix is used (e.g.,
A.5).

A. Proofs

Proofs are easily handled by the predefined IEEEproof
environment:

\begin{IEEEproof}
.
.
\end{IEEEproof}

The Q.E.D. symbol “ ” is automatically placed at the end of
each proof. If needed, the symbol can be manually accessed
via the \IEEEQED command. Both the closed (default) “ ”
and open “ ” forms are provided as \IEEEQEDclosed and
\IEEEQEDopen, respectively. To change the default from
closed to open (some journals and/or authors prefer the open
form), just redefine \IEEEQED as desired:

\renewcommand{\IEEEQED}{\IEEEQEDopen}

IEEEproof also supports an optional argument which allows
the default string “Proof” to be overridden:

\begin{IEEEproof}[Proof of Theorem \ref{thm:my}]

XIII. END SECTIONS

A. Appendices

The \appendix command is used to start a single appendix.
An optional argument can be used to specify a title:

\appendix[Proof of the Zonklar Equations]

After issuing \appendix, the \section command will be
disabled and any attempt to use \section will be ignored
and will cause a warning message to be generated. (The
single appendix marks the end of the enumerated sections
and the section counter is fixed at zero—one does not state
“see Appendix A” when there is only one appendix, instead
“see the Appendix” is used.) However, all lower \subsecti
on commands and the \section* form will work as normal
as these may still be needed for things like acknowledgments.
\appendices is used when there is more than one ap-

pendix section. \section is then used to declare each ap-
pendix:

\section{Proof of the First Zonklar Equation}

16 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

The mandatory argument to section can be left blank (\sect
ion{}) if no title is desired. It is important to remember to
declare a section before any additional subsections or labels
that refer to section (or subsection, etc.) numbers. As with \a

ppendix, the \section* command and the lower \subsec
tion commands will still work as usual.

There are two appendix numbering conventions used by
IEEE. Capital letters (e.g., “Appendix B”) and Roman nu-
merals (e.g., “Appendix II”). The former appears to be more
popular and is the IEEEtran default. Use the IEEEtran class
option romanappendices to get Roman numbered appendices.

Some authors prefer to have the appendix number to be part
of equation numbers for equations that appear in an appendix.
This can be accomplished by redefining the equation numbers
as

\renewcommand{\theequation}{\thesection.\arabic{equa
tion}}

before the first appendix equation. For a single appendix, the
constant “A” should be used in place of \thesection.

B. Acknowledgments

Acknowledgments and other unnumbered sections are cre-
ated using the \section* command:

\section*{Acknowledgment}
\addcontentsline{toc}{section}{Acknowledgment}

The second, optional, command is needed to manually add
such sections to the table of contents (which is rarely used,
but some authors may do so with draft papers) as well as the
document’s PDF bookmarks (if using hyperref.sty).

Note that IEEE Computer Society papers typically use the
plural form “Acknowledgments”.

C. Bibliographies

Bibliographies are most easily (and correctly) generated
using the IEEEtran BIBTEX package [32] which is easily
invoked via

\bibliographystyle{IEEEtran}
\bibliography{IEEEabrv,mybibfile}

See the IEEEtran BIBTEX package documentation for more
information.

When submitting the document source (.tex) file to external
parties, it is strongly recommended that the BIBTEX .bbl file
be manually copied into the document (within the traditional
LATEX bibliography environment) so as not to depend on
external files to generate the bibliography and to prevent the
possibility of changes occurring therein.

D. Biographies

Biographies for journal articles are created using the IEEE-
biography environment which supports an optional argument
for the inclusion of a photo:

\begin{IEEEbiography}[{\includegraphics[width=1in,he
ight=1.25in,clip,keepaspectratio]{./shell}}]{Michael
Shell}
.

.
\end{IEEEbiography}

Note the extra set of braces that are required to prevent the
LATEX parser from becoming confused when commands with
optional arguments are used within an optional argument of
another command. Alternatively, a LATEX macro (command)
could be defined to facilitate a shorthand notation for the
author photos. If the optional argument is not used, space will
be reserved for a photo and the message “PLACE PHOTO
HERE” will be displayed in place of a photo.

IEEEtran is a tad overly cautious about preventing the
IEEEbiography photo area from being broken across pages.
If it looks as though a IEEEbiography should be able to be
“squeezed” at the end of a page, but instead it begins on a
new page, try inserting

\vspace*{-2\baselineskip}

or so before the IEEEbiography and see if it can fit.
IEEE’s algorithm for spacing around biographies can be a

tad complex because esthetics must be considered. IEEEtran
places \vfil above biographies. This allows the user to shove
biographies down or up as desired by placing the infinitely
more stretchable \vfill before or after the biographies.

The photo area is 1 in wide and 1.25 in long. The IEEE
recommends that author photo images should be of 220 dpi
(dots per inch) resolution and in gray scale with 8 bits/sample.

If no photo is available, the \IEEEbiographynophoto

environment, which does not support an optional argument
or reserve space for a photo, can be used instead.

XIV. LAST PAGE COLUMN EQUALIZATION

The IEEE (coarsely) equalizes the lengths of the columns
on the last page. The balance is coarse in the sense that
reference or IEEEbiography entries are not usually broken—so
the column lengths are not usually perfectly equal.

Balancing the last two columns is especially important for
camera ready work. It is recommended that authors use the
manual approach by putting in \newpage at the appropriate
point or \enlargethispage{-X.Yin} somewhere at the top
of the first column of the last page where “X.Yin” is the
amount to effectively shorten the text height of the given page.

Sometimes such a command has to be located between
bibliography entries. This can be a problem because, although
the command can be placed within the .bbl file, it will get
overwritten the next time BIBTEX is run. For this situation,
IEEEtran offers a way to invoke commands just before a given
reference number via the \IEEEtriggeratref{} command.
For instance, issuing the command

\IEEEtriggeratref{10}

before the bibliography will insert a page break just before
reference number ten. The command that is executed defaults
to \newpage. However, this can be changed via the \IEEE

triggercmd command:

\IEEEtriggercmd{\enlargethispage{-5.35in}}

Note that manually set break points or page sizes will have to
be readjusted if the document content ever changes.

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 17

There are LATEX packages, such as balance.sty [33] and
flushend.sty [34], that are designed to automatically balance
the columns on the last page. Flushend does not require the
placement of any special command in the first column of the
last page, balance.sty may. However, the use of these packages
is not recommended because they are known to be less than
perfectly reliable in their operation. The author of balance.sty
does not guarantee that it will work with every possible type
of page, especially pages with figures. Under certain circum-
stances, flushend.sty will cause a spacing anomaly between
two lines within a reference in the second column of the last
page (becomes larger than the space between references). This
problem seems to result because the bibliography in IEEEtran
is a list with zero space between the list items which are in
footnotesize. The problem can also occur under article.cls for
the same type of list. It may be possible to manually correct
the flushend anomaly by tweaking the spacer at the column
break via a flushend command such as “\atColsBreak{\vs
kip-2pt}”, but having to do so partially defeats the purpose
of using the package in the first place. If using flushend.sty or
balance.sty, be sure to check the document carefully for any
spacing problems—especially on the last page.

APPENDIX A
INSTALLING IEEETRAN

First of all, users should be aware that, depending on the
target operating system of the IEEEtran archive packaging
(e.g., .tar.gz for Unix, or .zip for MS Windows), the plain text
based IEEEtran files (.bst, .cls, .sty, .tex, etc.) may use one of
two different types of end-of-line character conventions. Unix
(including Mac OS X) systems use line feed <lf> (0x0A),
while MS Windows systems use carriage return/line feed pairs
<cr><lf> (0x0D 0x0A) to signal the end of lines.10 Most
modern LATEX systems are tolerant of differing end-of-line
conventions, but some text editors aren’t. (Symptoms here
include text appearing all on one long line, double spacing,
etc.)

LATEX .cls files can be accessed system-wide when they are
placed in the <texmf>/tex/latex directory, where <tex

mf> is the root directory of the user’s TEX installation. On
systems that have a local texmf tree (<texmflocal>), which
may be named “texmf-local” or “localtexmf”, it may be
advisable to install packages in <texmflocal>, rather than
<texmf> as the contents of the former, unlike that of the
latter, are preserved after the LATEX system is reinstalled and/or
upgraded.

It is recommended that the user create a subdirectory <t
exmf or texmflocal>/tex/latex/IEEE for all IEEE
related LATEX class and package files. On some LATEX systems,
the directory look-up tables will need to be refreshed after
making additions or deletions to the system files. For TEX
Live systems this is accomplished via executing
texhash

as root. MiKTEX users can run

10The fact that different conventions exist for plain text is, of course, an
absurdity in itself. See the Wikipedia article “Newline” at http://en.wikipedia.
org/wiki/Newline for the history and details.

initexmf -u

to accomplish the same thing.
Users not willing or able to install the files system-wide can

install them in their personal directories, but will then have to
provide the path (full or relative) in addition to the filename
when referring to them in LATEX.

APPENDIX B
POSTSCRIPT/PDF OUTPUT

Some LATEX systems are not properly configured to produce
quality PostScript and/or PDF output. This has historically
been more of a problem with IEEE-related work because the
unique font combination the IEEE uses has been known to
trigger problems with some LATEX setups. Fortunately, these
types of problems are now relatively uncommon on modern
LATEX systems.

To assist IEEE authors in detecting and correcting prob-
lems with LATEX PostScript/PDF generation, the “Testflow”
diagnostic suite was developed [35]. Authors are encouraged
to take the time to go through the testflow diagnostic and
identify and correct potential problems before their LATEX
systems have to be relied on for production work. Papers with
problems such as incorrect margins, font types, PDF format
errors and/or improper font embedding can incur delays during
the manuscript acceptance process.

APPENDIX C
OTHER USEFUL OR RELATED EXTERNAL PACKAGES

A. The acronym.sty Package

Tobias Oetiker’s acronym.sty [36] may be useful with
papers that have a lot of acronyms. However, beware of a
compatibility issue between the acronym environment and the
IEEEtran description lists (see Appendix E).

B. The url.sty Package

Papers that contain URLs, email address, etc., can likely
benefit from the use of Donald Arseneau’s url.sty LATEX
package [37] which provides for more intelligent line breaking
within such structures. Note that IEEEtran.cls automatically
sets the url font style of url.sty to “same” (that is, URLs will
be rendered in the same font as the text they appear in) as
IEEE journals do. To override this, the author must place the
\urlstyle after \begin{document}.

C. The IEEEtrantools Package

Some of the unique commands provided by the IEEEtran
LATEX class may be of use in non-IEEE related work using
other class files (e.g., dissertations, technical reports, etc.).
The IEEEtrantools.sty package [38] provides several popular
IEEEtran commands including \IEEEPARstart, the IEEE
style IED list environments, the IEEEeqnarray family of
commands, the IEEEproof environment and \IEEEauthor

refmark. The IEEEtrantools package is not needed under,
and should not be loaded with, the IEEEtran class. See the
IEEEtrantools documentation for more details.

http://en.wikipedia.org/wiki/Newline
http://en.wikipedia.org/wiki/Newline

18 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

APPENDIX D
COMMON USER MISTAKES

Many user mistakes with IEEEtran involve doing too much
rather than too little. Older class files may have required hacks
in order to get the formatting closer to that of the IEEE. These
tweaks are no longer needed. Users should carefully check
all the loaded packages to ensure that they are still useful
under the latest version of IEEEtran. Don’t load packages just
because “this is the way it always has been done.” The same
is true for manually adjusted spacing, margins, paper sizes,
etc.

Below are a few of the more commonly encountered mis-
takes to avoid.

Placing labels before captions: This is considered to be
one of the most frequent mistakes made in LATEX of all time.
Remember that \label must be placed after or within \cap

tion to be able to reference figures/tables properly. As it is
\caption that actually sets up the reference counter, \labe
l’s placed prior to \caption will refer to the section number,
instead of the desired figure/table number.

Altering the default fonts: Authors should allow IEEEtran
to manage the fonts. Unless specifically instructed otherwise,
such as under comsoc mode or in the author instructions of the
specific conference/journal being submitted to, do not attempt
to use packages that override the default fonts such as pslatex,
mathptm, etc.

Altering the default spacings, section heading styles,
margins or column style: Authors should not attempt to
manually alter the margins, paper size (except as provided
in IEEEtran class options) or use packages that do so (geom-
etry.sty, etc.). There should be no need to add spacing around
figures, equations, etc., (except possibly for double column
floats as described in Section X-D).

Using bitmapped graphics for line art: LATEX has always
favored the use of Encapsulated PostScript (EPS) or under
pdfLATEX, Portable Document Format (PDF), (which can be
considered to be a type of subset of PostScript), for graphics
(see Section X-A for more information), and for good reason.
EPS/PDF supports both vector (that is, containing objects
such as lines, circles, etc., that are mathematically described)
and bitmap (that is, containing only samples in the form
of pixels) images. The former should always be used for
drawings, graphs, charts, etc., while the latter usually has
to be employed with photos (because their contents usually
cannot be easily described mathematically). The drawing and
graphing tools used by the author should be capable of
outputting directly11 in vector (EPS or PDF) format. Vector
EPS/PDF images can be scaled, rotated and magnified without
undergoing degradation such as pixelization or becoming gray
or “jaggedy.” For photos, the IEEE recommends the use of
EPS/PDF (which is easy to directly import into (pdf)LATEX in a
portable manner), PNG or TIFF. For author photos JPEG (JPG)
is usually acceptable. The use of other graphic formats such
as BMP, EMF, VSD, etc., is unacceptable for IEEE journals.

11Once an image in EPS/PDF vector form is converted to a bitmap form
(GIF, PNG, TIFF, JPEG, etc.) it will almost always be irretrievably locked
into bitmap form even if it is later converted back into EPS/PDF.

Some IEEE conferences may be more liberal with regard to
the types of graphics formats they accept.

Using bitmapped fonts and/or not embedding and
subsetting all document fonts: Authors should check their
system with the testflow diagnostic [35] to ensure that only
vector (Type 1) fonts are being used and that all fonts are
embedded and subsetted. A document that uses bitmapped
fonts and/or fails to contain all (and only) the needed font
glyphs may be rejected by the IEEE. Watch out for graphical
drawing applications that produce output with these problems
(suspect this if the problem goes away when the figures are
not included).

Using older graphics packages: Authors should not use
anything other than the graphics and/or graphicx (preferred)
package for figures. Older interfaces such as psfig, epsf, etc.,
have been obsolete for many years.

Failing to properly divide long equations: It is the author’s
responsibility to ensure that all equations fit within the width of
their columns. Admittedly, breaking an equation is not always
easy to do and two column formatting places serious con-
straints on allowed equation width. However, only the author
can divide his/her equation without unintentionally altering its
meaning or affecting readability. Using subfunctions is a valid
way to reduce to width of an equation, but altering the math
font size is not.

Manually formatting references: Not only is this error
prone, but requires a lot of work as well. It is better to use
the IEEEtran BIBTEX style [32].

APPENDIX E
KNOWN ISSUES

acronym.sty: The acronym environment will have a prob-
lem with IEEEtran because of the modified IEEE style
description list environment. The optional argument of the
acronym environment cannot be used to set the width of the
longest label. A workaround is to use \IEEEiedlistdecl to
accomplish the same thing:
\renewcommand{\IEEEiedlistdecl}{\IEEEsetlabelwidth{S
ONET}}
\begin{acronym}
.
.
\end{acronym}
\renewcommand{\IEEEiedlistdecl}{\relax}% reset back

cite.sty: Versions prior to 5.0 (2009-03-20) will not hyper-
link citation numbers under hyperref.sty.

hyperref.sty: Versions prior to 6.72u will interfere with the
optional argument to \appendix.

Small caps font variations: The small caps font used in
the free LATEX systems have about 80% the height of normal
sized letters. However, the small caps font the IEEE uses in the
journals is slightly smaller with a ratio of around 75%. So, the
widths of the section headings produced under the free LATEX
systems will be slightly wider than that used in actual journals.
The small caps font used in many commercial LATEX systems
(such as those from YandY) has a ratio of about 65%. So,
those systems will produce section headings that are narrower
than those in IEEE publications. Such variations should not
be cause for concern.

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 19

APPENDIX F
THE IEEEEQNARRAY COMMANDS

(Optional—for advanced users)

Virtually all LATEX alignment commands such as \eqnarr

ay, \array and \tabular are based on the TEX command
\halign. LATEX’s goal of simplifying the use of \halign is
noble. However, in hiding much of the lower level interface, a
fair degree of flexibility is lost. This has resulted in the devel-
opment of several packages such as amsmath [11], array.sty
[28], and the MDW tools [17], each of which provides much
more powerful alignment structures.

IEEEtran also provides its own unique set of alignment
tools which are known as the IEEEeqnarray family. The
design philosophy of the IEEEeqnarray family is to provide
a LATEX alignment interface that is based more closely on the
underlying \halign, but to couple this with high level col-
umn definition management and automated preamble building
mechanisms (which are tedious to do in TEX). As a result,
the IEEEeqnarray family of commands are flexible enough
to be almost universal replacements for all the other LATEX
commands for producing multiline equations and aligned box
structures such as matrices and tables of text and/or mathe-
matics. Because the user is shielded less from the \halign

underpinnings, the rules of operation are more involved. So,
the IEEEeqnarray commands are aimed primarily toward the
more advanced LATEX users.

The use of the IEEEeqnarray family of tools described
in this section is totally optional. The IEEEeqnarray code
is self-contained and does not depend on other alignment
packages—which can be used along side, or in place of, it. The
IEEEtrantools.sty package (See Appendix C-C) is available
for those who wish to use the IEEEeqnarray family outside of
IEEEtran.cls.

Recommended sources of information on the use of IEEEe-
qnarray include Stefan M. Moser’s How to Typeset Equations
in LATEX [6] and Tobias Oetiker’s The Not So Short Introduction
to LATEX 2ε [5].

A. IEEEeqnarray

The IEEEeqnarray environment is for multiline equations
that occupy the entire column. It is used in much the same
way as \eqnarray, but with two additional arguments, one
of which is mandatory and the other is optional:
\begin{IEEEeqnarray}[decl]{cols}
.
\end{IEEEeqnarray}

The optional argument is for commands that are to be executed
within the environment, but before the alignment actually be-
gins. This is just like the local control of the IEEEtran IED list
environments. There is also a global control, \IEEEeqnarray
decl, which is executed just prior to the local control. By
default, \IEEEeqnarraydecl is defined to be \relax. As
mentioned in Section XI, users should be careful not to allow
unwanted spaces to occur in these controls because such
things will appear just before the IEEEeqnarray structure.
Furthermore, remember that, to prevent the LATEX parser from

TABLE IV
IEEEEQNARRAY PREDEFINED COLUMN TYPES

I.D. Description I.D. Description

l left math v vertical rule
c centered math vv two vertical rules
r right math V double vertical rule
L left math with ords VV two double vertical rules
C centered math with ords h horizontal rule
R right math with ords H double horizontal rule
s left text x empty
t centered text X empty math
u right text

Note: S, T, U, p, and P are likely to be used in future versions.

TABLE V
IEEEEQNARRAY PREDEFINED COLUMN SEPARATION (GLUE) TYPES

I.D. Width* I.D. Width

! −1/6 em . 0.5\arraycolsep

, 1/6 em / 1.0\arraycolsep

: 2/9 em ? 2.0\arraycolsep

; 5/18 em * 0pt plus 1fil
’ 1 em + 1000pt minus 1000pt
" 2 em - 0pt

*All em values are referenced to the math font.
1 em = \quad, 2 em = \qquad

becoming confused, the contents of an optional argument must
be enclosed in braces if the argument contains commands with
optional arguments.

The mandatory argument cols contains the column and
inter-column separator spacing (“inter-column tabskip glue”
in TEXspeak) type specifiers. Column types are identified by
letters. Several predefined column types are available as shown
in Table IV. There are two kinds of glue types. Predefined glue
types are indicated by various punctuation marks as shown in
Table V. User defined glue types are indicated by numbers.

The rules for placing these specifiers are as follows: (1) no
two glue specifiers can appear next to each other—they are
not additive and must be separated from each other by at least
one column specifier; (2) zero inter-column spacing will be
assumed between back-to-back column specifiers; (3) because
of rule one, back-to-back numerals will be considered as being
a single glue specified by the numerical value represented by
all the digits; (4) a multiletter column specifier can be accessed
by enclosing the letters within braces (otherwise it would be
interpreted as being several single letter column specifiers).
Because of rule three, braces are not needed around multidigit
glue specifiers; (5) there must be at least one column specifier,
but there is no fixed upper limit of how many columns can be
supported; and (6) for \IEEEeqnarray, “+” centering glue
will be assumed at each end of the cols specification if
no column glue is specified there. This results in a centered
structure like \eqnarray (the 1000pt minus 1000pt glue on
each side “compresses” as needed from each side of the main
text column to center that which is between). Also, \IEEE
eqnarray automatically adds a hidden column for equation

20 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

numbers to the right of the last specified column. Currently,
there is no support for equation numbers on the left side.12

B. Defining Column Types

New column types are defined with the
\IEEEeqnarraydefcol{col_id}{predef}{postdef}

command. The col_id argument contains the name of the
column specifier which should consist only of one or more
letters. A given column specifier, even the predefined ones, can
be redefined at will without warning or error.13 The predef

argument contains the commands that will be inserted before
each cell in the column. The postdef argument contains the
commands that will be inserted after each cell in the column.
For example,
\IEEEeqnarraydefcol{g}{\hfil\clubsuit}{$\diamondsu
it$\hfil}

Will define a “g” text column which will place club and
diamond suit symbols on either side of a cell’s contents and
center the respective structure within the cell. e.g.,

♣Hello♦
Using \hfil to control cell alignment allows the user

to override the column alignment on a cell-by-cell basis by
placing the infinitely more stretchable \hfill on one or both
sides of a cell’s contents. \hfill can even be placed between
items in a cell to force them apart and against the “cell walls.”
The IEEEeqnarray predefined columns are designed to allow
user overrides via \hfill whenever possible (even for the
math mode cells).

Please note that TEX will not allow unmatched braces within
the arguments of commands. If braces are needed, such as for
the argument of a command, they will have to be provided
within the cells themselves. For example,
\IEEEeqnarraydefcol{myp}{\parbox[c]{0.5in}}{}
\begin{IEEEeqnarraybox}{{myp}c}
{first\\second}&\alpha\\
&\beta%
\end{IEEEeqnarraybox}

defines a column type named “myp” that will place text within
a 0.5 inch wide parbox which is centered on the cell’s baseline.
Note that because the column type name consists of more than
one letter, it has to be enclosed within an extra set of braces
in the column specifications or else it would be interpreted as
three adjacent columns “m”, “y” and “p”. Also, the contents
of the cell must be enclosed within braces so that (1) the \par
box command sees the entire contents as its argument; and (2)
the newline within the parbox will not be interpreted as being
the end of the alignment row. Be aware that it can happen that
a column is given an empty cell, such as in the second row in
the example, or when entering blank separator rows. When this
happens, a \relax will appear in the column which will be
acquired as the command’s argument. Therefore, commands
in column definitions that acquire arguments from the cells
should not choke if fed \relax.

12This is not to say that its impossible with the existing capability, just
ugly.

13Thus allowing new predefined column types to be added without breaking
existing code.

For reference, the definitions of the predefined column types
are shown here:
% math
\IEEEeqnarraydefcol{l}{$\IEEEeqnarraymathstyle}{$\hfil}
\IEEEeqnarraydefcol{c}{\hfil$\IEEEeqnarraymathstyle}{$\hfil}
\IEEEeqnarraydefcol{r}{\hfil$\IEEEeqnarraymathstyle}{$}
\IEEEeqnarraydefcol{L}{$\IEEEeqnarraymathstyle{}}{{}$\hfil}
\IEEEeqnarraydefcol{C}{\hfil$\IEEEeqnarraymathstyle{}}{{}$\h
fil}
\IEEEeqnarraydefcol{R}{\hfil$\IEEEeqnarraymathstyle{}}{{}$}
% text
\IEEEeqnarraydefcol{s}{\IEEEeqnarraytextstyle}{\hfil}
\IEEEeqnarraydefcol{t}{\hfil\IEEEeqnarraytextstyle}{\hfil}
\IEEEeqnarraydefcol{u}{\hfil\IEEEeqnarraytextstyle}{}
% vertical rules
\IEEEeqnarraydefcol{v}{}{\vrule width\arrayrulewidth}
\IEEEeqnarraydefcol{vv}{\vrule width\arrayrulewidth\hfil}{\h
fil\vrule width\arrayrulewidth}
\IEEEeqnarraydefcol{V}{}{\vrule width\arrayrulewidth\hskip\d
oublerulesep\vrule width\arrayrulewidth}
\IEEEeqnarraydefcol{VV}{\vrule width\arrayrulewidth\hskip\do
ublerulesep\vrule width\arrayrulewidth\hfil}%
{\hfil\vrule width\arrayrulewidth\hskip\doublerulesep\vrule
width\arrayrulewidth}
% horizontal rules
\IEEEeqnarraydefcol{h}{}{\leaders\hrule height\arrayrulewidt
h\hfil}
\IEEEeqnarraydefcol{H}{}{\leaders\vbox{\hrule width\arrayrul
ewidth\vskip\doublerulesep\hrule width\arrayrulewidth}\hfil}
% plain
\IEEEeqnarraydefcol{x}{}{}
\IEEEeqnarraydefcol{X}{$}{$}

Note the inclusion of the commands \IEEEeqnarraymat

hstyle and \IEEEeqnarraytextstyle in the math and
text columns, respectively. These commands allow the user
to control the style of all of the math and text columns.
However, because the changes apply to all the columns, the
user will have to define new column types if different styles
are needed in the same alignment (or different styles can be
manually specified in each cell). The default definitions for
these commands are
\newcommand{\IEEEeqnarraymathstyle}{\displaystyle}
\newcommand{\IEEEeqnarraytextstyle}{\relax}

which allows the text columns to be in whatever style was in
effect when the alignment was started and the default math
style will be in display style, but can be easily changed as
needed. e.g.,
\begin{IEEEeqnarray}[\renewcommand{\IEEEeqnarraymath
style}{\scriptstyle}]{rCl}

will result in script style math columns.
The columns relating to vertical and horizontal lines will

be discussed in Appendix F-K as they are typically used only
when producing tables.

The “x” and “X” columns are basic empty text and math
mode columns without any formatting or style controls.

C. Defining Glue Types

New column separation glue types are defined with the
\IEEEeqnarraydefcolsep{colsep_id}{def}

command. The colsep_id argument contains the number of
the column separation glue specifier which should consist only
of numerals. Different glue type names must have different
numerical values. (Don’t get too cute—“007” is identical to
“7”.) User defined column glue specifiers can be redefined
at will without warning or error. The def argument contains

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 21

the width of the given glue type. Widths may be specified as
absolute values or reference length commands:

\IEEEeqnarraydefcolsep{9}{10pt}
\IEEEeqnarraydefcolsep{11}{2\tabcolsep}

The glue type widths are not evaluated when defined, but are
evaluated each time they are actually referenced as IEEEeq-
narray column specifiers. Thus, for the second definition in
the example above, if \tabcolsep were to be revised after
the glue type was defined, the revised value would be what is
used.

Rubber lengths are allowed too. The fact that the centering
glue “+” is a known value can be exploited to achieve some
interesting effects. For example,

\IEEEeqnarraydefcolsep{17}{200pt minus 200pt}

will produce a column separation glue that is always 1/5 of
the width of the distance from the equation sides to the ends
of the main text columns. And, of course, “+” can be used as
needed to produce groups of equally spaced equations as in
amsmath’s \align:

\begin{IEEEeqnarray}{Rl+Rl+Rl}

D. A Simple Example of Use

The example in Section IX can be implemented using
\IEEEeqnarray via

\begin{IEEEeqnarray}{rCl}
Z&=&x_1 + x_2 + x_3 + x_4 + x_5 + x_6\IEEEnonumber\\
&&+\:a + b%
\end{IEEEeqnarray}

As shown in Table IV the “C” column type is a centered math
mode column with empty ords (“{}”) on either side. So, there
is no need to place empty ords around the equal sign. As with
\eqnarray, the & separate the column cells and are where
the inter-column separation glue will appear (when nonzero).

Note the presence of the % at the end of the second row.
TEX does not ignore spaces that occur before commands or
& column delimiters, but does ignore those that occur after.
Most LATEX alignment implementations shield the user from
this behavior by removing all spacing previous to &, \\ and
\end. The IEEEeqnarray family does not do this! So, it is
important to prevent spaces (including implied ones at the end
of lines) from occurring before such commands unless they are
wanted. Suspect this problem if there is an unexplained offset
within a column. In the given example, unwanted spacing is
not an issue because end spacing is ignored in math mode
anyway. However, it would be an issue if the columns used
text mode instead.

Alternatively, one could use a two column form:

\begin{IEEEeqnarray}{Rl}
Z=&x_1 + x_2 + x_3 + x_4 + x_5 + x_6\IEEEnonumber\\
&+\:a + b%
\end{IEEEeqnarray}

E. Equation Numbering

Like \eqnarray, \IEEEeqnarray, has a “star form,” \IE

EEeqnarray*, which does not place equation numbers at the
end of each row by default. The default behavior of individual
rows can be overridden by placing the commands \IEEEye

snumber or \IEEEnonumber as needed in the last column.
\IEEEeqnarray also provides \IEEEyessubnumber and \I

EEEnosubnumber which can be used to enable or disable
a subequation number for the given row. To support this
feature, IEEEtran defines its own IEEEsubequation counter
(reset with changes to equation) and \theIEEEsubequati

on command.14

As of version 1.8 of IEEEtran, the star forms \IEEEyesn

umber*, \IEEEnonumber*, \IEEEyessubnumber* and \I

EEEnosubnumber* are available which persist across rows
until countermanded by another star command. The behavior
of later individual rows can be selectively overridden with the
use of the non-star forms as needed.

Despite there being four numbering commands, it is useful
to remember that there are only three IEEEeqnarray numbering
modes:

1) Display nothing and do not alter the counters (\IEEEn
onumber);

2) Increment the equation counter and display an equation
number without a subequation part (\IEEEyesnumber);

3) Increment the subequation counter and display an equa-
tion number with a subequation number (\IEEEyessu
bnumber).

\IEEEnosubnumber is not really needed and behaves much
like \IEEEyesnumber except that the former does not also
enable equation numbering if it isn’t already on (and does not
alter the numbering properties of the current row if equation
numbering is off).

Generally speaking, only one numbering command should
be used per row. In particular, mixing yes and no commands
on a single row could result in unintended operation. However,
a notable exception is the very useful \IEEEyesnumber\IEE
Eyessubnumber combination which starts a new subequation
sequence. For example,

\begin{IEEEeqnarray}{c}
x1\IEEEyesnumber\IEEEyessubnumber*\\
x2\\
x3\IEEEyesnumber\IEEEyessubnumber\label{eqn:expl}\\
x4\\
x5\IEEEyesnumber*\\
x6
\end{IEEEeqnarray}

yields:

x1 (8a)
x2 (8b)
x3 (9a)
x4 (9b)
x5 (10)
x6 (11)

14What is actually displayed is the \theIEEEsubequationdis com-
mand.

22 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

The \IEEEyesnumber command increments the equation
counter of what would otherwise have been a subequation
row, resets the subequation counter and turns off subequation
numbering. The following \IEEEyessubnumber then incre-
ments the subequation counter by one and restores subequation
numbering.15

Note that any labels for (sub)equations must be placed
after any numbering control command(s) because, prior to that
point, the label will reference the equation number that would
have been used if there had not been any numbering control
commands.

Please be aware that \IEEEeqnarray, like \eqnarray,
will, if the equation is long enough, overwrite the equation
number without warning!16 For cases when this happens, users
can insert a \IEEEeqnarraynumspace command at the end
of the line (after any \IEEEyessubnumber if used) which
will insert a space equal in width to the displayed equation
number:

· · · + x_z \IEEEyessubnumber\IEEEeqnarraynumspace\\

As a result, the entire multiline equation will be slightly shifted
to the left. The IEEE often does the same thing in its journals
when confronted by this situation. If an overfull hbox results,
the offending equation line will have to be further divided.

F. Extra Vertical Spacing and Page Breaks

Like \eqnarray, \IEEEeqnarray’s \\ command supports
a star form which inhibits page breaks at the given line as well
as an optional extra vertical spacing argument:

&+\:a + b*[5pt]

Users are reminded from Section IX that amsmath will
configure LATEX to disallow page breaks within multiline
equations—including those made by \IEEEeqnarray be-
cause it also honors the value of \interdisplaylinepen

alty.
Also like \eqnarray, \IEEEeqnarray normally places

a small amount of extra spacing (as specified by the length
command \jot) between lines to “open up” equations as well
as to prevent large symbols from coming to close to the lines
above them.

G. IEEEeqnarraybox

\IEEEeqnarray is not suitable for producing structures
such as matrices and tables because it must have exclusive
access to the main text column and cannot be nested within
other structures. For these applications, the \IEEEeqnarray

15Invoking only a \IEEEyessubnumber following a normal equation
number line will result in a sequence like 14, 14a. The IEEE does not typically
use normal equation numbers followed by subequations carrying that same
base equation number, but the capability is there if you ever need it. IEEEtran
versions prior to v1.8 differed here in that they automatically advanced the
equation number on the “first” call to \IEEEyessubnumber and so did
not have this degree of flexibility.

16This behavior is extremely difficult to avoid if the equation line is to
remain centered irrespective of the width of the equation number—without
even considering the subjective question of how close is too close for any
given case!

box command is provided. \IEEEeqnarraybox differs from
\IEEEeqnarray in the following ways:

1) the entire contents are wrapped within a box and there-
fore, can be nested within other display or alignment
structures (such as \equation, \IEEEeqnarray or
even another \IEEEeqnarraybox). Note that, like all
box structures, page breaks are not allowed between the
rows of an \IEEEeqnarraybox;

2) the default glue at the outer ends of the first and last
columns is 0 pt (“-”), not “+” centering glue as with \I

EEEeqnarray;
3) no automatic (hidden) equation number column is pro-

vided;
4) the star form “\IEEEeqnarraybox*” turns off the extra

\jot vertical spacing after each row;
5) \IEEEeqnarrayboxdecl is the global control.
There are two subforms: \IEEEeqnarrayboxm which is for

use within math modes and is analogous to \array; and \IE

EEeqnarrayboxt which is for use within text modes and is
analogous to \tabular. If called via \IEEEeqnarraybox the
current math/text mode will be auto-detected and the proper
subform will automatically be selected. Therefore, \IEEEeqn
arraybox can replace \array as well as \tabular.

The syntax for \IEEEeqnarraybox is similar to \IEEEeq

narray, but with two additional optional arguments:

\begin{IEEEeqnarraybox}[decl][pos][width]{cols}
.
\end{IEEEeqnarraybox}

The pos argument can be one of t, c, or b to control where the
box will be vertically aligned relative to the current baseline:
t at the top row; c at the center;17 b at the bottom row. The
default is b.

The width argument specifies the width the box. Warning:
if a width is specified, there must be one or more rubber
lengths in the inter-column glue specifiers (such as that of “*”
or “+”) so that the box can be sized as needed. If there is no
such glue, or the glue provided cannot stretch/shrink enough
as needed, the box cannot be sized to width and an underfull
or overfull hbox error will result. If no width argument is
provided, the box will be set to its natural width (and the use
of rubber inter-column glue will not be required).
\IEEEeqnarraybox uses the same column and glue type

specifiers/definitions as \IEEEeqnarray.

H. Line Spacing in LATEX

Before discussing some of the more advanced aspects of
vertical spacing control in the IEEEeqnarray family, it is im-
portant to review the details of LATEX’s line spacing algorithm.
Normally, baselines are separated by the amount given by the
length command \baselineskip. With each change in font
size, \baselineskip is reset to the default value for that font
size (multiplied by \baselinestretch). Then the value of
\baselineskip is saved to the length variable \normalbas

17Centering is actually done along the “math axis” (not exactly on the text
baseline, but quite close to it). Many LATEX users are not aware of this minor
distinction.

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 23

elineskip (so that the normal value can be later referenced
even if \baselineskip is set to another value by the user).
However, if the top of a line ever gets closer than \lineski

plimit to the bottom of the line above it, the use of \basel
ineskip will be suspended and \lineskip spacing will be
placed between the two lines.18

This system works well for text. However, for mathematics,
whose symbols have a much higher dynamic range of heights
and depths, it is usually better to go ahead and always add an
extra fixed amount of space (\jot) as mentioned in Appendix
F-F.

When the IEEEeqnarray family is loaded, a new length
command is defined, \IEEEnormaljot, which stores the
nominal value of \jot19, so that this can be always be referred
to even if other values are currently being used.

At the start of \IEEEeqnarray/box, but before the local
or global controls, the following initialization takes place:
\lineskip=0pt
\lineskiplimit=0pt
\baselineskip=\normalbaselineskip
\jot=\IEEEnormaljot

Thus, \baselineskip is set to the normal value for the
current font, \jot is restored to its nominal value and the
\lineskiplimit system is disabled.20

This system is designed to better facilitate nested IEEEeq-
narraybox structures as well as to help prevent the user from
encountering seemingly uncontrollable spacing behavior (e.g.,
“How do I get rid of that unwanted space?!”).

I. The IEEEeqnarray Strut System

When creating tables, especially tables with vertical rules,
vertical space between the rows of the table is not generally
desirable because such space will suspend the column cell
definitions and “cut across” any vertical rules that may be
present. Yet, there must be a way to keep rows adequately
spaced apart. To solve this problem, the IEEEeqnarray/box
commands provide an integrated system to manage struts21

contained in a hidden column on the right end of each
IEEEeqnarray/box structure.

The struts in each row will be set to a default strut height
and depth. Normally, the default strut height and depth are
initialized to zero, so the struts will effectively not be present.
The user can set the default strut values via the
\IEEEeqnarraystrutsize{height}{depth}[decl]

command which can be placed in a local or global control. The
optional argument is for commands that will be executed prior
to the evaluation of the height and depth arguments. Thus,
\IEEEeqnarraystrutsize{0.5\baselineskip}{}[\large]

will set the default strut height to half the baselineskip used by
the large font size, even if the current baselineskip (and/or font

18Within IEEEtran.cls, \lineskiplimit and \lineskip are zero—if
things get too close it is the author’s responsibility to correct the problem
without having IEEEtran.cls second guessing the author’s intent.

19Within IEEEtran.cls, the nominal value of \jot is 25% of the baseli-
neskip for the normalsize font.

20As long as rows cannot be of negative height.
21“Struts” are vertical rules of zero width, but of finite height.

size) is different. The commands which are executed within the
optional argument are contained within their own environment
so as not to have any effects outside of the \IEEEeqnarra

ystrutsize command. For mimicking the action of \bas

elineskip, the typically recommended height and depth of
struts is 70% and 30%, respectively, of \normalbaselines
kip22. \IEEEeqnarraystrutsize will assume these values
if its height and/or depth arguments are left blank. e.g., in the
previous example, the strut depth will be set to 30% of \nor
malbaselineskip for the large font size.

There is also a

\IEEEeqnarraystrutsizeadd{height}{depth}[decl]

command which will add to the current default strut values
and can be used much like the \extrarowheight parameter
of the array.sty package. Empty arguments are assumed to be
0 pt.
\IEEEeqnarraystrutsize and \IEEEeqnarraystruts

izeadd can also be used at the end of the last column to alter
the strut size used for a particular row (the default strut values
of the other rows will not be affected).

There is also a

\IEEEstrut[height][depth][decl]

which produces a strut. It can be used whenever a “manual”
strut is needed—even outside the \IEEEeqnarray/box en-
vironments. If a height or depth argument is not provided (or
empty) then these will be assumed in the same way as \IEEE
eqnarraystrutsize does.

For diagnostic purposes (in order to see if any row objects
exceed the height of the struts), the command \IEEEvisibl

estrutstrue can be placed with an \IEEEeqnarray/box

or \IEEEstrut control to make the struts visible.
When using \IEEEeqnarraybox to produce tables that

contain vertical lines, it is usually desirable to shutdown the
\baselineskip system and switch over to pure strut spacing.
The following command sequence, placed within a local or
global control, will serve this purpose:

\IEEEeqnarraystrutsize{0.7\normalbaselineskip}{0.3\n
ormalbaselineskip}[\relax]
\setlength{\baselineskip}{0pt}%
\setlength{\lineskip}{0pt}%
\setlength{\lineskiplimit}{0pt}%
\setlength{\jot}{0pt}%

Note the use of “%” to prevent the ends of the lines that end
in braces from being interpreted as unwanted spaces. Because
of the frequent need to call this sequence, the IEEEeqnarray
family provides the \IEEEeqnarraystrutmode command
which does the same thing.

J. Overriding Column Types

Within a row, one or more column types can be overridden
by placing the command

\IEEEeqnarraymulticol{num_cols}{col_type}{text}

22Note that this not the normalsize baselineskip, but the normal baselineskip
for the current font size.

24 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

as the very first command in a cell. This command is the
IEEEeqnarray equivalent of \multicolumn. The first argu-
ment is the number of columns to override (cutting through
any inter-column glues as needed). The second argument is the
column type specifier to use. The third argument contains the
cell text. The third argument will have to be enclosed within
an extra set of braces if the column type is to acquire it as an
argument—as was done with the “myp” parbox column type
in the example earlier (Appendix F-B).

There is also the \IEEEeqnarrayomit command which,
when used as the very first command in a cell, will suspend the
use of the normal column type for that cell. This is somewhat
like a quicker version of \IEEEeqnarraymulticol{1}{x}
{}.

Users are cautioned not to use commands like these (e.g.,
\multicolumn) that are designed for other alignment envi-
ronments.23

K. Predefined Column Types for Rules

Several of the predefined column types produce vertical or
horizontal lines. Note that, in the IEEEeqnarray family, rules
are declared and treated as normal column types—they are not
hidden. Although this approach may increase the number of
columns the user has to keep track of, especially when creating
tables, it does offer a great deal of flexibility by allowing the
user to override, or otherwise manipulate, any column type
(including those that produce rules) at will.

All of the predefined rule column types use the \arrayru

lewidth length to determine the line thickness and \doubl

erulesep for the spacing of double rules.
The “v” column type produces a vertical rule, “vv” produces

two back-to-back vertical rules which will appear as one
rule of twice the normal thickness. “V” produces a double
vertical rule with \doublerulesep spacing between its two
lines. “VV” produces two back-to-back double vertical rules
which will appear to be three vertical rules, the middle one of
which being twice as thick as the other two. It is possible to
“spread apart” the “vv” and “VV” types by placing a spacer
within their columns—thus they can be used to generate two
single, or double, vertical rules whose separation distance is
programmable.

The “h” and “H” types produce single and double horizontal
rules, respectively. Horizontal rule types are not normally used
in the column specifications, but rather with the \IEEEeqna

rraymulticol command in order to draw a horizontal rule
across one or more column(s).

Please be aware that the line commands of other alignment
environments may not work properly within the IEEEeqnarray
family which provides its own ways of doing these types of
things. In particular, \cline is totally incompatible—users
should use the \IEEEeqnarraymulticol{num_cols}{h}

{} command instead. However, \vline and \hline should
work—unless another LATEX package redefines them in some

23Those who are familiar with TEX may be interested in the fact that TEX’s
\omit, \span and \multispan should work in \IEEEeqnarraybox,
but not in \IEEEeqnarray because of the need to track column usage with
a hidden counter in the latter.

incompatible way. The IEEEeqnarray family provides its own
version of \vline:

\IEEEeqnarrayvrule[rule_thickness]

that produces a vertical rule extending from the top to bottom
of a cell without overriding the column type. The optional
argument is for specifying the rule thickness which defaults
to \arrayrulewidth if no argument is provided.

The IEEEeqnarray row commands (discussed in the next
section) provide some alternatives to \hline.

L. Row Commands

The IEEEeqnarray family has several commands which can
be used to produce special rows that span all the columns.
Unless otherwise noted, the commands described here must
issued as the very first command in a given row.

To produce a spacer row that relies on the strut system, use

\IEEEeqnarrayseprow[height][decl]

The first argument specifies the height of the strut row, if left
blank or empty, the default value of 0.25\normalbaseli

neskip will be assumed. The second optional argument is
for commands which will be executed prior to the evaluation
of the first argument as is done with \IEEEeqnarraystrut

size. \IEEEeqnarrayseprow will not interrupt the column
definitions, so it will not cut vertical lines. If column definition
suspension is desired, use the cutting form which will override
all the column types in the entire row:

\IEEEeqnarrayseprowcut[height][decl]

To produce a horizontal rule row, use:

\IEEEeqnarrayrulerow[rule_thickness]

which will override all the column definitions with one that
produces a horizontal rule. If the optional rule thickness is not
specified, the value of \arrayrulewidth will be used.

To produce a double rule row, use:

\IEEEeqnarraydblrulerow[rule_thickness][spacing]

which will produce a rule row, a (noncutting) separation row,
followed by another rule row. If the optional rule thickness is
not specified, the value of \arrayrulewidth will be used
when producing each of the two rule rows. If the optional
separation distance is not specified, the value of \doubleru
lesep will be used. There is also a cutting form:

\IEEEeqnarraydblrulerowcut[rule_thickness][spacing]

which works the same way except that the separation row
will override all the column definitions. (Vertical rule columns
will not appear inside the double rule row produced by this
command.)

M. Useful Low Level TEX Commands

Although the use of lower level TEX commands is generally
frowned upon in LATEX, some of them are just too helpful to
ignore.
 produces an invisible box with the width,

height and depth of its contents, but the contents themselves

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 25

will not appear in the output. There is also the \hphantom

{} and \vphantom{} forms which retain only the contents’
width, or its height and depth, respectively. As an example,
look carefully at the footnotes at the bottom of Table V. This
table was produced using the \IEEEeqnarraybox command.
The footnotes are actually contained within the last two rows
of the table. Note how the left sides of the footnotes line
up, even though the first one has a superscript asterisk for a
footnote symbol. The reason that the second row lines up is
because, at its left side, it employs a horizontal phantom of
the very same symbol:

\hphantom{*}

Vertical phantoms can be used to equalize row height or
spacing—such as to get matrices that fit within brackets of
the same size even though one has “tall” symbols and the
other not.

The opposite of \hphantom{} is \rlap{} which displays
its contents, but with zero width. There is also an \llap{}

which does the same thing, but the contained object will appear
just to the left of the given point, rather than after as with
\rlap. For example, look closely at the first “Width” column
heading in Table V. The word “Width” is centered irrespective
of the asterisk. That is because the width of the asterisk was
zeroed:

Width\rlap{*}

The vertical analog of \rlap is \smash{} which reduces the
apparent height and depth of its contents to zero. (LATEX’s
\raisebox{0pt}[0pt][0pt]{} does about the same thing,
and also provides an adjustable vertical offset.) \smash can
be used when space is already reserved for an object, but
that LATEX does not “know” this and would allocate unwanted
additional vertical space. One good use of smash for table
objects that are to be “slipped” into a hidden row of zero
height, or into a row which is to be no higher than the “short”
things, such as horizontal rules, that are in its other columns.

The TEX \noalign{} command can be used within IEEEe-
qnarray family to inject text which is outside of the alignment
structure. For example,

\begin{IEEEeqnarray}{rCl}
A_1&=&7\IEEEyesnumber\IEEEyessubnumber\\
A_2&=&b+1\IEEEyessubnumber\\
\noalign{\noindent and\vspace{\jot}}A_3&=&d+2\IEEEye
ssubnumber%
\end{IEEEeqnarray}

produces

A1 = 7 (12a)
A2 = b+ 1 (12b)

and
A3 = d+ 2 (12c)

When employed, \noalign must be the very first com-
mand in a row—even before any \IEEEeqnarraymulticol,
\IEEEeqnarrayomit, or row commands.

Be forewarned that the proper use of \noalign can be
tricky. There are three potential issues. (1) Remember that
\noalign will place its contents outside of the alignment.

So, the line spacing controls of the IEEEeqnarray commands
will not be in effect. The user may have to manually add \bas

elineskip and/or \jot spacing as needed (which was done
in the previous example). (2) Furthermore, \noalign does
not automatically place its contents within a box. However,
nonaligned material must be placed within a horizontal box
when within the vertical box produced by the \IEEEeqnarr

aybox command. Therefore, when using \noalign within
a \IEEEeqnarraybox, be sure to wrap things up in an
\hbox{}:24

\noalign{\hbox{and therefore}}

(3) Finally, there may be some issues related to how easily
page breaks occur around the \noalign lines. This is an issue
only with \IEEEeqnarray because page breaks cannot occur
within the box produced by \IEEEeqnarraybox. If needed,
page break desirability can be altered by manually entering
\pagebreak, or \nopagebreak, etc., at the end of the \no

align contents.

N. More Practical Examples of Use

The use of the IEEEeqnarray is somewhat complicated.
However, once the building blocks and core concepts are
understood, the user may find that is easier to use the
IEEEeqnarray family for just about every alignment situation
rather than to have to remember all the interfaces and unique
behaviors of many different tools.

A few “real world” examples will now be demonstrated.
1) IEEEeqnarray Cases Structures: Cases structures can be

obtained using \IEEEeqnarraybox:

|x| =
{
x, for x ≥ 0

−x, for x < 0
(13)

which was produced using the code:

\begin{equation}
\setlength{\nulldelimiterspace}{0pt}
|x|=\left\{\begin{IEEEeqnarraybox}[\relax][c]{l’s}
x,&for $x \geq 0$\\
-x,&for $x < 0$%
\end{IEEEeqnarraybox}\right.
\end{equation}

Note the use of the large \quad (1 em) spacing before the
conditional statements. The zeroing of \nulldelimiterspa
ce, an optional step, eliminates the width of the nonvisible
closing brace “\right.” in order to perfectly center the
visible portion of the equation.25

Note that both branches share a common equation number.
If an equation (sub)number is wanted for each branch, the
preferred solution is to use the cases.sty package as discussed
in Section IX-A. However, it is possible to use \IEEEeqnar

ray to build such a thing—although it takes extra work and
a few tricks to do so. For example,

x, for x ≥ 0 (14a)
|x| =

{
−x, for x < 0 (14b)

24LATEX’s \mbox will not work!
25The width of null delimiters is typically only 1.2 pt, and so can usually

be safely ignored.

26 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

was produced using the code:

\begin{IEEEeqnarray}[\setlength{\nulldelimiterspace}
{0pt}]{rl’s}
&x,&for $x \geq 0$\IEEEyesnumber\IEEEyessubnumber*
[-0.625\normalbaselineskip]
\smash{|x|=\left\{\IEEEstrut[3\jot][3\jot]\right.}&&
\nonumber*[-0.625\normalbaselineskip]
&-x,&for $x < 0$\IEEEyessubnumber
\end{IEEEeqnarray}

A hidden middle row is used to hold the left hand side of
the equality. In order to prevent this row from altering the
spacing between the two branches, its height must be smashed
and the extra line spacing (which consists of \baselinesk

ip, plus \jot which is normally 0.25\baselineskip for
IEEEtran.cls.) must be removed, half from above and half
from below,—making it look as though the middle row never
occurred. Because the large brace cannot “see” the height of
the branches, it must be manually sized with a strut. The
star form of the new line commands is used to prevent the
possibility of a page break within the structure.

2) Matrices: Displayed matrices can easily be created with
\IEEEeqnarraybox:

I =

(
1 0 0
0 1 0
0 0 1

)
(15)

The code of this example is quite simple:

\begin{equation}
I = \left(\begin{IEEEeqnarraybox*}[][c]{,c/c/c,}
1&0&0\\
0&1&0\\
0&0&1%
\end{IEEEeqnarraybox*}\right)
\end{equation}

Because the example matrix has elements of normal height,
one can use the star form of \IEEEeqnarraybox to turn off
the extra \jot component of the line spacing so as to make
a more compact matrix. If larger symbols had been used in
the matrix, the nonstar form would be the better choice. \ar
raycolsep typically serves quite well as an element column
separator. A standard small math space is added to the ends
of the matrix to provide a little distance between it and its
enclosing parentheses.

It is instructive to show how to construct a “small” matrix26,

S =
[

1/2 0

0 3/4

]
(16)

which was produced via

\newcommand{\mysmallarraydecl}{\renewcommand{%
\IEEEeqnarraymathstyle}{\scriptscriptstyle}%
\renewcommand{\IEEEeqnarraytextstyle}{\scriptsize}%
\renewcommand{\baselinestretch}{1.1}%
\settowidth{\normalbaselineskip}{\scriptsize
\hspace{\baselinestretch\baselineskip}}%
\setlength{\baselineskip}{\normalbaselineskip}%
\setlength{\jot}{0.25\normalbaselineskip}%
\setlength{\arraycolsep}{2pt}}
%
\begin{equation}
S=\left[\begin{IEEEeqnarraybox*}[\mysmallarraydecl]

26IEEE authors should note that the use of small matrices is not recom-
mended as the IEEE does not usually reduce font sizes in equations or alter
the main text baselineskip to accommodate in-text mathematics.

TABLE VI
NETWORK DELAY AS A FUNCTION OF LOAD

Average Delay
β

λmin λmax

1 0.057 0.172

10 0.124 0.536

100 0.830 0.905*

*limited usability

[c]{,c/c,}
1/2&0\\
0&3/4%
\end{IEEEeqnarraybox*}\right]
\end{equation}

The use of a user defined command, \mysmallarrayde

cl, to contain the IEEEeqnarray setup code, demonstrates
how users can easily recreate their most commonly used
structures by fully exploiting the on-the-fly configurability of
the IEEEeqnarray family.

This example is more complex than need be in order to
demonstrate a few techniques. It would be easy enough to set
\baselineskip to the desired value, but suppose that the
matrix rows are to be spaced some multiple of the \baselin

eskip of the \scriptsize font. Complicating matters even
more is the fact that most LATEX class files will not allow the
user to execute text font size commands within math mode—
and the matrix is within an equation. So, \scriptsize cannot
be used to directly set the \baselineskip.

The first step is to set the math and text columns to
their desired styles. Then \baselinestretch is setup to be
used like \arraystretch. The trick is to run \scriptsize

within a \settowidth command which stores the \basel

ineskip of the \scriptsize font, multiplied by \baseli

nestretch, in \normalbaselineskip which is then used
to set \baselineskip, \jot, etc. Finally, \arraycolsep is
reduced to better suit the smaller font. Note the use of “%”
to prevent unwanted spaces from appearing after the braces at
the end of lines in \mysmallarraydecl.

3) Tables: Tables, especially those with lines, tend to be a
little more complicated. Table VI was made with the following
code:

\begin{table}[!t]
\centering
\caption{Network Delay as a Function of Load}
\label{table_delay}
\begin{IEEEeqnarraybox}[\IEEEeqnarraystrutmode\IEEEe
qnarraystrutsizeadd{2pt}{0pt}]{x/r/Vx/r/v/r/x}
\IEEEeqnarraydblrulerowcut\\
&&&&\IEEEeqnarraymulticol{3}{t}{Average Delay}&\\
&\hfill\raisebox{-3pt}[0pt][0pt]{β}\hfill&&\IE
EEeqnarraymulticol{5}{h}{}%
\IEEEeqnarraystrutsize{0pt}{0pt}\\
&&&&\hfill\lambda_{\mbox{min}}\hfill&&\hfill
\lambda_{\mbox{max\vphantom{i}}}\hfill&\IEEEeqnarray
strutsizeadd{0pt}{2pt}\\
\IEEEeqnarraydblrulerowcut\\
&1&&& 0.057&& 0.172&\\
&10&&& 0.124&& 0.536&\\
&100&&& 0.830&& 0.905\rlap{*}&\\
\IEEEeqnarraydblrulerowcut\\
&\IEEEeqnarraymulticol{7}{s}{\scriptsize\textsupersc

SHELL: HOW TO USE THE IEEETRAN LATEX CLASS 27

TABLE VII
POSSIBLE Ω FUNCTIONS

Range Ω(m)

x < 0 Ω(m) =

m∑
i=0

K−i

x ≥ 0 Ω(m) =
√
m

ript{*}limited usability}%
\end{IEEEeqnarraybox}
\end{table}

Because this table has lines, the first step is to enable strut
mode line spacing. The strut height is then increased by a
couple of points to provide a little more headroom above the
letters.27 This table uses cutting horizontal rules and open
sides as is commonly done in IEEE publications. There are
three extra “x” columns which serve as place holders. The
“x” columns at each end serve as a quick way to get the
horizontal rules to extend a little past the contents of the table.
The middle “x” column serves as an attachment point for the
horizontal rule that is below “Average Delay”. Without this
extra column, the left side of that horizontal rule would cut
into the middle double vertical rule.28 Notice how the “β” is
smuggled in as part of the row containing the horizontal rule.
β has to be smashed so that it will not add unwanted vertical
spacing. Likewise, the strut for that row is disabled. Also, \ra
isebox is used instead of \smash so that β can be vertically
lowered—otherwise it would appear on its baseline which is
too high for the purpose at hand. The \hfill on either side
of β changes the justification of that cell to centered. The
“min” and “max” subscripts would not normally sit at the
same level because the “i” in min is slightly higher than the
letters in “max”. To fix this, a \vphantom “i” is added to
“max”. Because these subscripts sit so low, the depth of that
line’s strut is increased a couple of points. Alternatively, one
could have just smashed the “i”. The asterisk next to “0.905”
is reduced to zero width via \rlap so that it will not affect its
cell’s width or alignment. This example also illustrates how
to integrate table footnotes into the end of a table without the
help of external packages.

Strut spacing does not work so well for rows that contain
tall symbols because such objects routinely exceed the height
of the struts. Furthermore, increasing the strut height is often
not an option because (1) the height and depth of the tall
symbols must be measured or guessed; and (2) there may be
other rows which have normal line height. Table VII illustrates
such a situation. Its code is shown here:

\begin{table}[!t]
\centering
\caption{Possible Ω Functions}
\label{table_omega}
\begin{IEEEeqnarraybox}[\IEEEeqnarraystrutmode\IEEEe
qnarraystrutsizeadd{2pt}{1pt}]{v/c/v/c/v}
\IEEEeqnarrayrulerow\\
&\mbox{Range}&&\Omega(m)&\\

27Knuth calls this extra step a mark of quality.
28Some may even think it would be better that way, but we want to show

some tricks in these examples.

\IEEEeqnarraydblrulerow\\
\IEEEeqnarrayseprow[3pt]\\
&x < 0&&\Omega(m)=\sum\limits_{i=0}^{m}K^{-i}&\IEEEe
qnarraystrutsize{0pt}{0pt}\\
\IEEEeqnarrayseprow[3pt]\\
\IEEEeqnarrayrulerow\\
\IEEEeqnarrayseprow[3pt]\\
&x \ge 0&&\Omega(m)=\sqrt{m}\hfill&\IEEEeqnarraystru
tsize{0pt}{0pt}\\
\IEEEeqnarrayseprow[3pt]\\
\IEEEeqnarrayrulerow
\end{IEEEeqnarraybox}
\end{table}

The solution is to use \IEEEeqnarrayseprow to manually
add in a fixed amount of extra space as needed. In this way,
\IEEEeqnarrayseprow can do for lined tables what \jot
does for multiline equations. Of course, using this method, the
baselines of the rows will no longer be equally spaced.

The \hfill in the square root cell is a cheap, but effective,
way of getting the equal signs to line up without the need of
additional columns.

ACKNOWLEDGMENT

The author would like to thank Ken Rawson, Kevin
Lisankie, Kimberly Sperka, Steve Wareham, Patrick Kellen-
berger, Laura Hyslop and Cathy Cardon of the IEEE for their
help and support in making this work possible. The knowledge
and prior work of TEX gurus such as Donald Arseneau,
Fred Bartlett, David Carlisle, Tony Liu, Frank Mittelbach,
Piet van Oostrum, Roland Winkler and Mark Wooding were
instrumental in developing the complex IEEEeqnarray family
of commands. The author is also grateful to Peter Wilson and
Donald Arseneau for allowing the inclusion of their \@ifmt
arg command.

Finally, this work might not have been possible had it
not been for the efforts of the prior IEEEtran developers:
Gerry Murray, Silvano Balemi, Jon Dixion, Peter Nüchter and
Juergen von Hagen. Their work still lives on to some degree
within IEEEtran.

REFERENCES

[1] (2015, Jul.) The IEEE website. [Online]. Available: http://www.ieee.org/
[2] M. Shell. (2015, Aug.) The IEEEtran.cls package. [Online]. Available:

http://www.ctan.org/pkg/ieeetran
[3] ——. (2015, Jul.) IEEEtran homepage. [Online]. Available: http:

//www.michaelshell.org/tex/ieeetran/
[4] H. Kopka and P. W. Daly, Guide to LATEX, 4th ed. Harlow, England:

Addison-Wesley, 2003.
[5] T. Oetiker, H. Partl, I. Hyna, and E. Schlegl. (2015, Jul.)

The not so short introduction to LATEX 2ε. [Online]. Available:
http://www.ctan.org/pkg/lshort

[6] S. M. Moser. (2013, Aug.) How to Typeset Equations in LATEX.
[Online]. Available: http://moser.cm.nctu.edu.tw/manuals.html#eqlatex

[7] R. Fairbairns. (2014, Jun.) The TEX FAQ. [Online]. Available:
http://www.tex.ac.uk/

[8] M. Sharpe. (2015, Jul.) The newtx package. [Online]. Available:
http://www.ctan.org/pkg/newtx

[9] (2015, Jul.) Mathtime professional fonts. Personal TEX, Inc. [Online].
Available: http://www.pctex.com/mtpro2.html

[10] D. Carlisle and F. Mittelbach. (2015, Apr.) The bm package. [Online].
Available: http://www.ctan.org/pkg/bm

[11] (2013, Jan.) The amsmath package. The American Mathematical
Society. [Online]. Available: http://www.ctan.org/pkg/amsmath

[12] S. Pakin. (2009, Apr.) The IEEEconf.cls package. [Online]. Available:
http://www.ctan.org/pkg/ieeeconf

http://www.ieee.org/
http://www.ctan.org/pkg/ieeetran
http://www.michaelshell.org/tex/ieeetran/
http://www.michaelshell.org/tex/ieeetran/
http://www.ctan.org/pkg/lshort
http://moser.cm.nctu.edu.tw/manuals.html#eqlatex
http://www.tex.ac.uk/
http://www.ctan.org/pkg/newtx
http://www.pctex.com/mtpro2.html
http://www.ctan.org/pkg/bm
http://www.ctan.org/pkg/amsmath
http://www.ctan.org/pkg/ieeeconf

28 JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015

[13] J. D. McCauley, J. Goldberg, and A. Sommerfeldt. (2011, Dec.) The
endfloat package. [Online]. Available: http://www.ctan.org/pkg/endfloat

[14] H. Oberdiek. (2012, May) The ifpdf package. [Online]. Available:
http://www.ctan.org/pkg/ifpdf

[15] A. Gefen, “Simulations of foot stability during gait characteristic of
ankle dorsiflexor weakness in the elderly,” IEEE Trans. Neural Syst.
Rehab. Eng., vol. 9, no. 4, pp. 333–337, Dec. 2001.

[16] D. Arseneau. (2015, Mar.) The cite package. [Online]. Available:
http://www.ctan.org/pkg/cite

[17] M. D. Wooding. (1999, Mar.) The MDW tools package. [Online].
Available: http://www.ctan.org/pkg/mdwtools

[18] D. Arseneau. (2010, Feb.) The cases package. [Online]. Available:
http://www.ctan.org/pkg/cases

[19] S. Tolušis and V. Statulevičius. (2013, Oct.) The stfloats package.
[Online]. Available: http://www.ctan.org/pkg/stfloats

[20] D. Carlisle. (2015, Apr.) Packages in the ‘graphics’ bundle. grfguide.pdf.
[Online]. Available: http://www.ctan.org/pkg/graphics

[21] K. Reckdahl. (2006, Jan.) Using imported graphics in LATEX 2ε.
[Online]. Available: http://www.ctan.org/pkg/epslatex

[22] C. Barratt, M. C. Grant, and D. Carlisle. (1998, May) The psfrag
package. [Online]. Available: http://www.ctan.org/pkg/psfrag

[23] S. D. Cochran. (2005, Jul.) The subfigure package. [Online]. Available:
http://www.ctan.org/pkg/subfigure

[24] S. D. Cochran, V. Karen-Pahlav, Z. Mehran, and V. Khalighi. (2005, Jul.)
The subfig package. [Online]. Available: http://www.ctan.org/pkg/subfig

[25] A. Sommerfeldt. (2013, May) The subcaption package. [Online].
Available: http://www.ctan.org/pkg/subcaption

[26] P. Williams and R. Brito. (2009, Aug.) The algorithmic package.
[Online]. Available: http://www.ctan.org/pkg/algorithms

[27] S. János. (2005, Apr.) The algorithmicx.sty package. [Online].
Available: http://www.ctan.org/pkg/algorithmicx

[28] F. Mittelbach and D. Carlisle. (2015, Apr.) The array package. [Online].
Available: http://www.ctan.org/pkg/array

[29] D. Arseneau. (2010, Mar.) The threeparttable package. [Online].
Available: http://www.ctan.org/pkg/threeparttable

[30] D. Carlisle. (1999, Apr.) The fix2col package. [Online]. Available:
http://www.ctan.org/pkg/fix2col

[31] M. Høgholm. (2012, Dec.) The dblfloatfix package. [Online]. Available:
http://www.ctan.org/pkg/dblfloatfix

[32] M. Shell. (2015, Aug.) The IEEEtran BIBTEX style. [Online]. Available:
http://www.ctan.org/pkg/ieeetran

[33] P. W. Daly. (2013, May) The balance package. [Online]. Available:
http://www.ctan.org/pkg/balance

[34] S. Tolušis and V. Statulevičius. (2015, Apr.) The flushend package.
[Online]. Available: http://www.ctan.org/pkg/flushend

[35] M. Shell. (2007, Jan.) The testflow diagnostic suite. [Online]. Available:
http://www.ctan.org/pkg/testflow

[36] T. Oetiker. (2015, Mar.) The acronym package. [Online]. Available:
http://www.ctan.org/pkg/acronym

[37] D. Arseneau. (2013, Dec.) The url package. [Online]. Available:
http://www.ctan.org/pkg/url

[38] M. Shell. (2015, Aug.) The IEEEtrantools package. [Online]. Available:
http://www.ctan.org/pkg/ieeetrantools

Michael Shell (M’87) received the B.E.E., M.S.E.E.
and Ph.D. degrees in electrical engineering all from
the Georgia Institute of Technology, Atlanta, in
1991, 1993 and 2004 respectively. He has developed
several all-optical packet-switched network subsys-
tems and node demonstrations. His research interests
include all-optical packet-switched networks, high
speed opto-electronic interface design, discrete sim-
ulation and exact Markov models for buffered packet
switches.

Dr. Shell is also the author of the most recent
versions of the IEEEtran LATEX class and BIBTEX style packages and is the
current maintainer of both.

http://www.ctan.org/pkg/endfloat
http://www.ctan.org/pkg/ifpdf
http://www.ctan.org/pkg/cite
http://www.ctan.org/pkg/mdwtools
http://www.ctan.org/pkg/cases
http://www.ctan.org/pkg/stfloats
http://www.ctan.org/pkg/graphics
http://www.ctan.org/pkg/epslatex
http://www.ctan.org/pkg/psfrag
http://www.ctan.org/pkg/subfigure
http://www.ctan.org/pkg/subfig
http://www.ctan.org/pkg/subcaption
http://www.ctan.org/pkg/algorithms
http://www.ctan.org/pkg/algorithmicx
http://www.ctan.org/pkg/array
http://www.ctan.org/pkg/threeparttable
http://www.ctan.org/pkg/fix2col
http://www.ctan.org/pkg/dblfloatfix
http://www.ctan.org/pkg/ieeetran
http://www.ctan.org/pkg/balance
http://www.ctan.org/pkg/flushend
http://www.ctan.org/pkg/testflow
http://www.ctan.org/pkg/acronym
http://www.ctan.org/pkg/url
http://www.ctan.org/pkg/ieeetrantools

	I Introduction
	II Class Options
	II-A 9pt, 10pt, 11pt, 12pt
	II-B draft, draftcls, draftclsnofoot, final
	II-C conference, journal, technote, peerreview, peerreviewca
	II-C1 Conference Mode Details

	II-D comsoc, compsoc, transmag
	II-D1 Comsoc Mode
	II-D2 Compsoc Mode
	II-D3 Transmag Mode

	II-E letterpaper, a4paper, cspaper
	II-F oneside, twoside
	II-G onecolumn, twocolumn
	II-H romanappendices
	II-I captionsoff
	II-J nofonttune

	III The CLASSINPUT, CLASSOPTION and CLASSINFO Controls
	III-A CLASSINPUTs
	III-B CLASSOPTIONs
	III-C CLASSINFOs

	IV The Title Page
	IV-A Paper Title
	IV-B Author Names
	IV-B1 Names in Journal/Technote Mode
	IV-B2 Names in Conference Mode
	IV-B3 Names in Compsoc Journal Mode
	IV-B4 Names in Compsoc Conference Mode
	IV-B5 Names in Transmag Journal Mode

	IV-C Running Headings
	IV-D Publication ID Marks
	IV-E Special Paper Notices

	V Abstract and Index Terms
	VI Sections
	VI-A Initial Drop Cap Letter

	VII Citations
	VIII Equations
	IX Multi-line Equations
	IX-A Cases Structures

	X Floating Structures
	X-A Figures
	X-A1 Subfigures

	X-B Algorithms
	X-C Tables
	X-C1 Footnotes Within Tables

	X-D Double Column Floats
	X-D1 Double Column Equations

	XI Lists
	XI-A Itemize
	XI-B Enumerate
	XI-C Description

	XII Theorems and Proofs
	XII-A Proofs

	XIII End Sections
	XIII-A Appendices
	XIII-B Acknowledgments
	XIII-C Bibliographies
	XIII-D Biographies

	XIV Last Page Column Equalization
	Appendix A: Installing IEEEtran
	Appendix B: PostScript/PDF Output
	Appendix C: Other Useful or Related External Packages
	C-A The acronym.sty Package
	C-B The url.sty Package
	C-C The IEEEtrantools Package

	Appendix D: Common User Mistakes
	Appendix E: Known Issues
	Appendix F: The IEEEeqnarray Commands
	F-A IEEEeqnarray
	F-B Defining Column Types
	F-C Defining Glue Types
	F-D A Simple Example of Use
	F-E Equation Numbering
	F-F Extra Vertical Spacing and Page Breaks
	F-G IEEEeqnarraybox
	F-H Line Spacing in LaTeX
	F-I The IEEEeqnarray Strut System
	F-J Overriding Column Types
	F-K Predefined Column Types for Rules
	F-L Row Commands
	F-M Useful Low Level TeX Commands
	F-N More Practical Examples of Use
	F-N1 IEEEeqnarray Cases Structures
	F-N2 Matrices
	F-N3 Tables

	Acknowledgment
	References
	Biographies
	Michael Shell

