Comprehensive TeX Archive Network

CTAN Up­date: pst-func

Date: Au­gust 4, 2017 9:13:29 PM CEST
Her­bert Voß sub­mit­ted an up­date to the pst-func pack­age. Ver­sion: 0.87 2017-08-03 Li­cense: lppl Sum­mary de­scrip­tion: PSTricks pack­age for plot­ting math­e­mat­i­cal func­tions An­nounce­ment text:
Ver­sion 0.87 has a mod­i­fied al­go­rithm for cal­cu­lat­ing bi­no­mial dis­tri­bu­tions with a large n.
The pack­age’s Cat­a­logue en­try can be viewed at https://ctan.org/pkg/pst-func The pack­age’s files them­selves can be in­spected at http://mir­ror.ctan.org/graph­ics/pstricks/con­trib/pst-func/
Thanks for the up­load. For the CTAN Team Pe­tra Rübe-Pugliese
We are sup­ported by the TeX users groups. Please join a users group; see https://www.tug.org/user­groups.html .

pst-func – PSTricks pack­age for plot­ting math­e­mat­i­cal func­tions

The pack­age is built for use with PSTricks. It pro­vides macros for plot­ting and ma­nip­u­lat­ing var­i­ous math­e­mat­i­cal func­tions:

  • poly­no­mi­als and their deriva­tives f(x)=an*x^n+an-1*x^(n-1)+...+a0 de­fined by the co­ef­fi­cients a0 a1 a2 ... and the deriva­tive or­der;
  • the Fourier sum f(x) = a0/2+a1­cos(omega x)+...+b1sin(omega x)+... de­fined by the co­ef­fi­cients a0 a1 a2 ... b1 b2 b3 ...;
  • the Bes­sel func­tion de­fined by its or­der;
  • the Gauss func­tion de­fined by sigma and mu;
  • Bézier curves from or­der 1 (two con­trol points) to or­der 9 (10 con­trol points);
  • the su­perel­lipse func­tion (the Lamé curve);
  • Che­by­shev poly­no­mi­als of the first and sec­ond kind;
  • the Thomae (or pop­corn) func­tion;
  • the Weier­strass func­tion;
  • var­i­ous in­te­gra­tion-de­rived func­tions;
  • nor­mal, bi­no­mial, pois­son, gamma, chi-squared, stu­dent’s t, F, beta, Cauchy and Weibull dis­tri­bu­tion func­tions and the Lorenz curve;
  • the ze­roes of a func­tion, or the in­ter­me­di­ate point of two func­tions;
  • the Va­sicek func­tion for de­scrib­ing the evo­lu­tion of in­ter­est rates; and
  • im­plicit func­tions.

The plots may be gen­er­ated as vol­umes of ro­ta­tion about the X-axis, as well.

Ver­sion0.87 2017-08-03
Main­tainerHer­bert Voß



Guest Book Sitemap Contact Contact Author